Year 2020, Volume 8 , Issue 2, Pages 96 - 109 2020-10-15

Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups

Temel ERMİŞ [1]


There are two main motivations in this article. First,we give the new metrics and the metric spaces whose unit spheres are Rectified Archimedean Solids. Then, using the general technique which is quite simple, we show that isometry group of $\mathbb{R}^{3}$ endowed with these new metrics are the semi direct product of the translation group $T(3)$ of $\mathbb{R}^{3}\ $ with the Euclidean symmetry groups of Rectified Archimedean Solids.

                                                                                                                                                                                                                                             .
Polyhedrons, Metric geometry, Isometry group, Octahedral group, Icosahedral group, Rectified Archimedean solids
  • [1] Atiyah, M., Sutcliffe, P.: Polyhedra in Physics, Chemistry and Geometry. Milan Journal of Mathematics. 71, 33-58 (2003).
  • [2] Berger, M.: Geometry I. Springer-Verlag (2004).
  • [3] Berger, M.: Geometry II, Springer-Verlag (2009).
  • [4] Carrizales, J.M.M., Lopez, J.L.R., Pal, U., Yoshida M.M., Yacaman M.J.: The Completion of the Platonic Atomic Polyhedra: The Dodecahedron. Small. 3 (2), 351-355 (2006).
  • [5] Ermiş, T.: Düzgün Çokyüzlülerin Metrik Geometriler ˙Ile ˙Ili¸skileri Üzerine. Ph.D. Eski¸sehir Osmangazi University (2014).
  • [6] Ermiş, T., Kaya, R.: Isometries the of 3􀀀Dimensional Maximum Space. Konuralp Journal of Mathematics. 3 (1), 103-114 (2015). [7] Gelişgen, Ö., Kaya, R.: The Taxicab Space Group. Acta Mathematica Hungarica. 122 (1-2), 187-200 (2009).
  • [8] Gelişgen, Ö., Çolak, Z.: A Family of Metrics for Some Polyhedra. Automation Computers Applied Mathematics Scienti c Journal. 24 (1), 3-15 (2015).
  • [9] Gelişgen, Ö., Can Z.: On The Family of Metrics for Some Platonic and Archimedean Polyhedra. Konuralp Journal of Mathematics. 4 (2), 2533 (2016).
  • [10] Gelişgen, Ö., Yavuz, S.: Isometry Groups of Chamfered Cube and Chamfered Octahedron Spaces. Mathematical Sciences and Applications E-Notes. 7 (2), 174-182 (2019).
  • [11] Griffiths, D.: Introduction to Elementary Particles.Wiley - VCH (1987).
  • [12] Horvath, A. G.: Semi-indefinite inner product and generalized Minkowski spaces. Journal of Geometry and Physics. 60 (9), 1190-1208 (2010).
  • [13] Horvath A. G.: Isometries of Minkowski geometries. Lin. Algebra and Its Appl. 512, 172-190 (2017).
  • [14] Lopez, J.L.R, Carrizales, J.M.M., Yacaman, M.J.: Low Dimensional Non-Crystallographic Metallic Nanostructures: Hrtem Simulation, Models and Experimental Results. Modern Physics Letters B. 20 (13), 725-751 (2006).
  • [15] Saller, H.: Operational Quantum Theory I-Nonrelativistic Structures.Springer-Verlag (2006).
  • [16] Schattschneider, D. J.: Taxicab group. Amer.Math. Monthly. 91, 423-428 (1984).
  • [17] Thompson, A.C.: Minkowski Geometry. Cambridge University Press, Cambridge (1996).
  • [18] http://dmccooey.com/polyhedra/RectifiedArchimedean.html
Primary Language en
Subjects Mathematics
Journal Section Articles
Authors

Orcid: 0000-0003-4430-5271
Author: Temel ERMİŞ (Primary Author)
Institution: ESKISEHIR OSMANGAZI UNIVERSITY
Country: Turkey


Supporting Institution ESKISEHIR OSMANGAZI UNIVERSTY
Project Number 201719A235
Thanks This work was supported by the Scientific Research Projects Commission of Eskisehir Osmangazi University under Project Number 201719A235.
Dates

Publication Date : October 15, 2020

Bibtex @research article { mathenot643969, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2020}, volume = {8}, pages = {96 - 109}, doi = {10.36753/mathenot.643969}, title = {Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups}, key = {cite}, author = {Ermi̇ş, Temel} }
APA Ermi̇ş, T . (2020). Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups . Mathematical Sciences and Applications E-Notes , 8 (2) , 96-109 . DOI: 10.36753/mathenot.643969
MLA Ermi̇ş, T . "Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups" . Mathematical Sciences and Applications E-Notes 8 (2020 ): 96-109 <https://dergipark.org.tr/en/pub/mathenot/issue/57179/643969>
Chicago Ermi̇ş, T . "Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups". Mathematical Sciences and Applications E-Notes 8 (2020 ): 96-109
RIS TY - JOUR T1 - Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups AU - Temel Ermi̇ş Y1 - 2020 PY - 2020 N1 - doi: 10.36753/mathenot.643969 DO - 10.36753/mathenot.643969 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 96 EP - 109 VL - 8 IS - 2 SN - -2147-6268 M3 - doi: 10.36753/mathenot.643969 UR - https://doi.org/10.36753/mathenot.643969 Y2 - 2020 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups %A Temel Ermi̇ş %T Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups %D 2020 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 8 %N 2 %R doi: 10.36753/mathenot.643969 %U 10.36753/mathenot.643969
ISNAD Ermi̇ş, Temel . "Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups". Mathematical Sciences and Applications E-Notes 8 / 2 (October 2020): 96-109 . https://doi.org/10.36753/mathenot.643969
AMA Ermi̇ş T . Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups. Math. Sci. Appl. E-Notes. 2020; 8(2): 96-109.
Vancouver Ermi̇ş T . Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups. Mathematical Sciences and Applications E-Notes. 2020; 8(2): 96-109.
IEEE T. Ermi̇ş , "Geometric Analysis of the Some Rectified Archimedean Solids Spaces via Their Isometry Groups", Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, pp. 96-109, Oct. 2020, doi:10.36753/mathenot.643969