Year 2021, Volume 9 , Issue 1, Pages 1 - 8 2021-03-01

Degenerate Poly-Type 2-Bernoulli Polynomials

Serkan ARACİ [1]


Recently, Kim-Kim [10] have studied type 2-Changhee and Daehee polynomials. They have also introduced the type 2-Bernoulli polynomials in order to express the central factorial numbers of the second kind by making use of type 2-Bernoulli numbers of negative integral orders. Inspired by their work, we consider a new class of generating functions of type 2-Bernoulli polynomials. We give some identities for these polynomials including type 2-Euler polynomials and Stirling numbers of the second kind.
Bernoulli numbers and polynomials, Type 2-Bernoulli numbers and polynomials, Polylogarithm, Generating function, Degenerate
  • [1] Bayad, A., Hamahata, Y.: Polylogarithms and poly-Bernoulli polynomials. Kyushu J. Math. 65, 15-24 (2012).
  • [2] Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15, 51-88 (1979).
  • [3] Chung, S.-K., Jang, G.-W., Kim, D.S., Kwon, J.: Some identities of the type 2 degenerate Bernoulli and Euler numbers. Adv. Stud. Contemp. Math. (Kyungshang). 29 (4), 613-632 (2019).
  • [4] Duran, U., Acikgoz, M., Araci, S.: Hermite based poly-Bernoulli polynomials with a q parameter, Adv. Stud. Contemp. Math. (Kyungshang). 28 (2), 285-296 (2018).
  • [5] Kaneko, M.: poly-Bernoulli numbers. J. Theor. Nombres Bordx. 9, 221-228 (1997).
  • [6] Kumar Sharma, S., Khan,W.A., Araci, S., Ahmed, S.S.: New type of degenerate Daehee polynomials of the second kind. Adv. Differ. Equ. 428 (2020).
  • [7] Sharma, S.K., Khan, W.A., Araci, S., Ahmed, S.S.: New construction of type 2 degenerate central Fubini polynomials with their certain properties. Adv. Differ. Equ. 587 (2020).
  • [8] Kilar, N., Simsek, Y.: Relations on Bernoulli and Euler polynomials related to trigonometric functions. Adv. Stud. Contemp. Math. (Kyungshang). 29 (2), 191-198 (2019).
  • [9] Kim, T., Kim, D.S., Kwon, J., Lee, H.: Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Equ. 168 (2020).
  • [10] Kim, T., Jang, Y.S; Seo, J.J: A note on Poly-Genocchi numbers and polynomials. Appl. Math. Sci. 8 (96), 4775-4781 (2014).
  • [11] Kim, T., Kim, D.S.: A note on type 2 Changhee and Daehee polynomials. RACSAM. 113, 2783-2791 (2019).
  • [12] Kim, D.S., Kim, T.: A note on degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Equ. 258 (2015).
  • [13] Kim, T., Kim, D.S., Kim, H.Y., Jang, L.-C.: Degenerate poly-Bernoulli numbers and polynomials. Informatica. 31 (3), 2-8 (2020).
  • [14] Kim, T., Jang, L.-C., Kim, D. S., Kim, H. Y.: Some identities on type 2 degenerate Bernoulli polynomials of the second kind. Symmetry. 12 (4), 510 (2020).
  • [15] Kim, D.S., Kim, T., Ryoo, C.S.: Generalized type 2 degenerate Euler numbers. Adv. Stud.Contemp. Math. (Kyungshang). 30 (2), 165-169, (2020).
  • [16] Kwon, J., Kim,W.J., Rim, S.-H.: On the some identities of the type 2 Daehee and Changhee polynomials arising from p-adic integrals on Zp. Proc. Jangjeon Math. Soc. 22 (3), 487-497 (2019).
  • [17] Kwon, J., Jang, L.-C.: A note on type 2 poly-Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang). 30 (2), 253-262 (2020).
  • [18] Lee, D.S., Kim, H.K., Jang, L.-C.: Type 2 degenerate poly-Euler Polynomials. Symmetry. 12, 1011 (2020).
  • [19] Jang, L.-C., Kim, D.S., Kim, T., Lee, H. p-adic integral on Zp associated with degenerate Bernoulli polynomials of the second kind. Adv. Differ. Equ. 2020, 278 (2020).
  • [20] Jang, G.-W., Kim, T.: A note on type 2 degenerate Euler and Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang). 29 (1), 147-159 (2019).
  • [21] Raza, N., Zainab, U., Araci, S., Esi, A.: Identities involving 3-variable Hermite polynomials arising from umbral method. Adv. Differ. Equ. 2020 (640), (2020).
Primary Language en
Subjects Mathematics
Journal Section Articles
Authors

Orcid: 0000-0002-3950-6864
Author: Serkan ARACİ (Primary Author)
Institution: HASAN KALYONCU UNIVERSITY
Country: Turkey


Dates

Application Date : December 11, 2020
Acceptance Date : February 13, 2021
Publication Date : March 1, 2021

Bibtex @research article { mathenot839111, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2021}, volume = {9}, pages = {1 - 8}, doi = {10.36753/mathenot.839111}, title = {Degenerate Poly-Type 2-Bernoulli Polynomials}, key = {cite}, author = {Araci, Serkan} }
APA Araci, S . (2021). Degenerate Poly-Type 2-Bernoulli Polynomials . Mathematical Sciences and Applications E-Notes , 9 (1) , 1-8 . DOI: 10.36753/mathenot.839111
MLA Araci, S . "Degenerate Poly-Type 2-Bernoulli Polynomials" . Mathematical Sciences and Applications E-Notes 9 (2021 ): 1-8 <https://dergipark.org.tr/en/pub/mathenot/issue/60389/839111>
Chicago Araci, S . "Degenerate Poly-Type 2-Bernoulli Polynomials". Mathematical Sciences and Applications E-Notes 9 (2021 ): 1-8
RIS TY - JOUR T1 - Degenerate Poly-Type 2-Bernoulli Polynomials AU - Serkan Araci Y1 - 2021 PY - 2021 N1 - doi: 10.36753/mathenot.839111 DO - 10.36753/mathenot.839111 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 1 EP - 8 VL - 9 IS - 1 SN - -2147-6268 M3 - doi: 10.36753/mathenot.839111 UR - https://doi.org/10.36753/mathenot.839111 Y2 - 2021 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes Degenerate Poly-Type 2-Bernoulli Polynomials %A Serkan Araci %T Degenerate Poly-Type 2-Bernoulli Polynomials %D 2021 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 9 %N 1 %R doi: 10.36753/mathenot.839111 %U 10.36753/mathenot.839111
ISNAD Araci, Serkan . "Degenerate Poly-Type 2-Bernoulli Polynomials". Mathematical Sciences and Applications E-Notes 9 / 1 (March 2021): 1-8 . https://doi.org/10.36753/mathenot.839111
AMA Araci S . Degenerate Poly-Type 2-Bernoulli Polynomials. Math. Sci. Appl. E-Notes. 2021; 9(1): 1-8.
Vancouver Araci S . Degenerate Poly-Type 2-Bernoulli Polynomials. Mathematical Sciences and Applications E-Notes. 2021; 9(1): 1-8.
IEEE S. Araci , "Degenerate Poly-Type 2-Bernoulli Polynomials", Mathematical Sciences and Applications E-Notes, vol. 9, no. 1, pp. 1-8, Mar. 2021, doi:10.36753/mathenot.839111