Research Article
BibTex RIS Cite
Year 2021, Volume: 9 Issue: 4, 170 - 175, 31.12.2021
https://doi.org/10.36753/mathenot.807993

Abstract

References

  • [1] Adeshola, A.D., Umar, A.: Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. Journal of Combinatorial Mathematics and Combinatorial Computing. 106, 37-49 (2018).
  • [2] Ayık, G., Ayık H., Koç, M.: Combinatorial results for order-preserving and order-decreasing transformations. Turkish Journal of Mathematics. 35 (4), 617-625 (2011).
  • [3] Ayık, H.: Presentations and efficiency of semigroups. Ph. D. Thesis. Universtiy of St Andrews (1998).
  • [4] Garba, G.U., Ibrahim, M.J., Imam, A.T.: On certain semigroups of full contraction maps of a finite chain. Turkish Journal of Mathematics. 41 (3), 500-507 (2017).
  • [5] Gomes,M.S.,Howie,J.M.:Ontheranksofcertainsemigroupsoforder-preservingtransformations.SemigroupForum. 45 (1), 272-282 (1992).
  • [6] Higgins, P.M.: Combinatorial results for semigroups of order-preserving mappings. Mathematical Proceedings of the Cambridge Philosophical Society. 113 (2), 281-296 (1993).
  • [7] Howie, J.M.: Fundamentals of semigroup theory. Oxford University Press. New York (1995).
  • [8] Ruskuc, N.: Semigroup presentations. Ph. D. Thesis. Universtiy of St Andrews (1995).

The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings

Year 2021, Volume: 9 Issue: 4, 170 - 175, 31.12.2021
https://doi.org/10.36753/mathenot.807993

Abstract

Let $n \in \mathbb{Z}^{+}$ and $X_{n}=\{1,2,\ldots,n\}$ be a finite set. Let $\mathcal ODCT_{n}$ be the order-preserving and order-decreasing full contraction mappings on $X_{n}$. It is well known that $\mathcal ODCT_{n}$ is a monoid. In this paper, we have found the monoid rank and monoid presentation of $\mathcal ODCT_{n}$. In particular, we have proved that monoid rank of $\mathcal ODCT_{n}$ is $n-1$ for $n \in \mathbb{Z}^{+}$ and $$ is a monoid presentation of $\mathcal ODCT_{n}$ for $n \geq 3$.

References

  • [1] Adeshola, A.D., Umar, A.: Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. Journal of Combinatorial Mathematics and Combinatorial Computing. 106, 37-49 (2018).
  • [2] Ayık, G., Ayık H., Koç, M.: Combinatorial results for order-preserving and order-decreasing transformations. Turkish Journal of Mathematics. 35 (4), 617-625 (2011).
  • [3] Ayık, H.: Presentations and efficiency of semigroups. Ph. D. Thesis. Universtiy of St Andrews (1998).
  • [4] Garba, G.U., Ibrahim, M.J., Imam, A.T.: On certain semigroups of full contraction maps of a finite chain. Turkish Journal of Mathematics. 41 (3), 500-507 (2017).
  • [5] Gomes,M.S.,Howie,J.M.:Ontheranksofcertainsemigroupsoforder-preservingtransformations.SemigroupForum. 45 (1), 272-282 (1992).
  • [6] Higgins, P.M.: Combinatorial results for semigroups of order-preserving mappings. Mathematical Proceedings of the Cambridge Philosophical Society. 113 (2), 281-296 (1993).
  • [7] Howie, J.M.: Fundamentals of semigroup theory. Oxford University Press. New York (1995).
  • [8] Ruskuc, N.: Semigroup presentations. Ph. D. Thesis. Universtiy of St Andrews (1995).
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Kemal Toker 0000-0003-3696-1324

Publication Date December 31, 2021
Submission Date October 8, 2020
Acceptance Date December 14, 2020
Published in Issue Year 2021 Volume: 9 Issue: 4

Cite

APA Toker, K. (2021). The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings. Mathematical Sciences and Applications E-Notes, 9(4), 170-175. https://doi.org/10.36753/mathenot.807993
AMA Toker K. The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings. Math. Sci. Appl. E-Notes. December 2021;9(4):170-175. doi:10.36753/mathenot.807993
Chicago Toker, Kemal. “The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings”. Mathematical Sciences and Applications E-Notes 9, no. 4 (December 2021): 170-75. https://doi.org/10.36753/mathenot.807993.
EndNote Toker K (December 1, 2021) The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings. Mathematical Sciences and Applications E-Notes 9 4 170–175.
IEEE K. Toker, “The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings”, Math. Sci. Appl. E-Notes, vol. 9, no. 4, pp. 170–175, 2021, doi: 10.36753/mathenot.807993.
ISNAD Toker, Kemal. “The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings”. Mathematical Sciences and Applications E-Notes 9/4 (December 2021), 170-175. https://doi.org/10.36753/mathenot.807993.
JAMA Toker K. The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings. Math. Sci. Appl. E-Notes. 2021;9:170–175.
MLA Toker, Kemal. “The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings”. Mathematical Sciences and Applications E-Notes, vol. 9, no. 4, 2021, pp. 170-5, doi:10.36753/mathenot.807993.
Vancouver Toker K. The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings. Math. Sci. Appl. E-Notes. 2021;9(4):170-5.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.