Research Article
BibTex RIS Cite
Year 2022, Volume: 10 Issue: 4, 170 - 178, 22.12.2022

Abstract

References

  • [1] Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229-243 (1998).
  • [2] Constantin, A., Molinet, L.: The initial value problem for a generalized Boussinesq equation. Differential Integral Equations. 15 (9), 1061–1072 (2002).
  • [3] Dullin, H. R., Gottwald, G., Holm, D. D.: An integrable shallow water equation with linear and nonlinear dispersion. Phy. Rev. Lett. 87 (9), 4501-4507 (2001).
  • [4] Dündar, N., Polat, N.: Blow-up phenomena and stability of solitary waves for a generalized Dullin-Gottwald-Holm equation. Boundary Value Problems. Article number: 226 (2013).
  • [5] Dündar, N., Polat, N.: Stability of solitary waves for a generalized higher-order shallow water equation. Filomat. 28 (5), 1007-1017 (2014).
  • [6] Dündar, N., Polat, N.: Local well-posedness for a generalized integrable shallow water equation with strong dispersive term. Appl. Math. Inf. Sci. 15 (4), 429-436 (2021).
  • [7] Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. J. Funct. Anal. 74, 160-197 (1987).
  • [8] Hakkaev, S.: Stability of peakons for an integrable shallow water equation. Phys. Lett. A. 354 (1-2), 137–144 (2006).
  • [9] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891-907 (1988).
  • [10] Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations. Lecture Notes in Mathematics (Springer Verlag, Berlin) 448, 25-70 (1975).
  • [11] Li, S.: Global weak solutions for the weakly dissipative Dullin-Gottwald-Holm equation. Journal of Advances in Mathematics and Computer Science. 36 (9), 91-108 (2021).
  • [12] Liu, Y.: Global existence and blow-up solutions for a nonlinear shallow water equation. Math. Ann. 335, 717-735 (2006).
  • [13] Liu, X., Yin, Z.: Local well-posedness and stability of peakons for a generalized Dullin–Gottwald–Holm equation. Nonlinear Analysis. 74, 2497-2507 (2011).
  • [14] daSilva,P.L.,Freire,I.L.: Well-posedness,travellingwavesandgeometricalaspectsofgeneralizationsoftheCamassa- Holm equation. J. Differ. Equ. 267, 5318–5369 (2019).
  • [15] Tian, L., Gui, G., Liu, Y.: On the Cauchy problem and the scattering problem for the Dullin–Gottwald–Holm equation. Comm. Math. Phys. 257, 667–701 (2005).
  • [16] Yin, Z.: Well-posedness, global existence and blowup phenomena for an integrable shallow water equation. Discrete Contin. Dyn. Syst. 11, 393-411 (2004).
  • [17] Zhang, S., Yin, Z.: Global weak solutions for the Dullin–Gottwald–Holm equation. Nonlinear Analysis: Theory, Methods and Applications. 72 (3-4), 1690-1700 (2010).
  • [18] Zhou, Y.: Blow-up of solutions to the DGH equation. Journal of Functional Analysis. 250, 227-248 (2007).

Blow-up for a Generalized Dullin-Gottwald-Holm Equation

Year 2022, Volume: 10 Issue: 4, 170 - 178, 22.12.2022

Abstract

In this paper, the blow up of solutions for a generalized version of the Dullin-Gottwald-Holm equation which is a nonlinear shallow water wave equation is studied. The precise blow-up scenario and a result of blow-up solutions are described. The blow-up occurs as wave breaking. This means the solution (representing the wave) remains bounded but its slope becomes infinite in finite time. We use an approach devised in [1].

References

  • [1] Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229-243 (1998).
  • [2] Constantin, A., Molinet, L.: The initial value problem for a generalized Boussinesq equation. Differential Integral Equations. 15 (9), 1061–1072 (2002).
  • [3] Dullin, H. R., Gottwald, G., Holm, D. D.: An integrable shallow water equation with linear and nonlinear dispersion. Phy. Rev. Lett. 87 (9), 4501-4507 (2001).
  • [4] Dündar, N., Polat, N.: Blow-up phenomena and stability of solitary waves for a generalized Dullin-Gottwald-Holm equation. Boundary Value Problems. Article number: 226 (2013).
  • [5] Dündar, N., Polat, N.: Stability of solitary waves for a generalized higher-order shallow water equation. Filomat. 28 (5), 1007-1017 (2014).
  • [6] Dündar, N., Polat, N.: Local well-posedness for a generalized integrable shallow water equation with strong dispersive term. Appl. Math. Inf. Sci. 15 (4), 429-436 (2021).
  • [7] Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. J. Funct. Anal. 74, 160-197 (1987).
  • [8] Hakkaev, S.: Stability of peakons for an integrable shallow water equation. Phys. Lett. A. 354 (1-2), 137–144 (2006).
  • [9] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891-907 (1988).
  • [10] Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations. Lecture Notes in Mathematics (Springer Verlag, Berlin) 448, 25-70 (1975).
  • [11] Li, S.: Global weak solutions for the weakly dissipative Dullin-Gottwald-Holm equation. Journal of Advances in Mathematics and Computer Science. 36 (9), 91-108 (2021).
  • [12] Liu, Y.: Global existence and blow-up solutions for a nonlinear shallow water equation. Math. Ann. 335, 717-735 (2006).
  • [13] Liu, X., Yin, Z.: Local well-posedness and stability of peakons for a generalized Dullin–Gottwald–Holm equation. Nonlinear Analysis. 74, 2497-2507 (2011).
  • [14] daSilva,P.L.,Freire,I.L.: Well-posedness,travellingwavesandgeometricalaspectsofgeneralizationsoftheCamassa- Holm equation. J. Differ. Equ. 267, 5318–5369 (2019).
  • [15] Tian, L., Gui, G., Liu, Y.: On the Cauchy problem and the scattering problem for the Dullin–Gottwald–Holm equation. Comm. Math. Phys. 257, 667–701 (2005).
  • [16] Yin, Z.: Well-posedness, global existence and blowup phenomena for an integrable shallow water equation. Discrete Contin. Dyn. Syst. 11, 393-411 (2004).
  • [17] Zhang, S., Yin, Z.: Global weak solutions for the Dullin–Gottwald–Holm equation. Nonlinear Analysis: Theory, Methods and Applications. 72 (3-4), 1690-1700 (2010).
  • [18] Zhou, Y.: Blow-up of solutions to the DGH equation. Journal of Functional Analysis. 250, 227-248 (2007).
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nurhan Dündar 0000-0003-0258-0953

Publication Date December 22, 2022
Submission Date September 26, 2021
Acceptance Date March 6, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Dündar, N. (2022). Blow-up for a Generalized Dullin-Gottwald-Holm Equation. Mathematical Sciences and Applications E-Notes, 10(4), 170-178. https://doi.org/10.36753/mathenot.1001012
AMA Dündar N. Blow-up for a Generalized Dullin-Gottwald-Holm Equation. Math. Sci. Appl. E-Notes. December 2022;10(4):170-178. doi:10.36753/mathenot.1001012
Chicago Dündar, Nurhan. “Blow-up for a Generalized Dullin-Gottwald-Holm Equation”. Mathematical Sciences and Applications E-Notes 10, no. 4 (December 2022): 170-78. https://doi.org/10.36753/mathenot.1001012.
EndNote Dündar N (December 1, 2022) Blow-up for a Generalized Dullin-Gottwald-Holm Equation. Mathematical Sciences and Applications E-Notes 10 4 170–178.
IEEE N. Dündar, “Blow-up for a Generalized Dullin-Gottwald-Holm Equation”, Math. Sci. Appl. E-Notes, vol. 10, no. 4, pp. 170–178, 2022, doi: 10.36753/mathenot.1001012.
ISNAD Dündar, Nurhan. “Blow-up for a Generalized Dullin-Gottwald-Holm Equation”. Mathematical Sciences and Applications E-Notes 10/4 (December 2022), 170-178. https://doi.org/10.36753/mathenot.1001012.
JAMA Dündar N. Blow-up for a Generalized Dullin-Gottwald-Holm Equation. Math. Sci. Appl. E-Notes. 2022;10:170–178.
MLA Dündar, Nurhan. “Blow-up for a Generalized Dullin-Gottwald-Holm Equation”. Mathematical Sciences and Applications E-Notes, vol. 10, no. 4, 2022, pp. 170-8, doi:10.36753/mathenot.1001012.
Vancouver Dündar N. Blow-up for a Generalized Dullin-Gottwald-Holm Equation. Math. Sci. Appl. E-Notes. 2022;10(4):170-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.