Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 2, 93 - 100, 14.04.2024
https://doi.org/10.36753/mathenot.1395051

Abstract

References

  • [1] Koufogiorgos, T., Tsichlias, C.: On the existence of a new class of contact metric manifolds. Canadian Mathematical Bulletin. 43(4), 440-447 (2000).
  • [2] Goldberg, S.I., Yano, K.: Integrability of almost cosymplectic strustures. Pacific Journal of Mathematics. 31, 373-382 (1969).
  • [3] Küpeli Erken, I.: On a classıfıcation of almost $\alpha -$ cosymplectic manifolds. Khayyam Journal of Mathematics. 5(1), 1-10 (2019).
  • [4] Olszak, Z.: On almost cosymplectic manifolds. Kodai Mathematical Journal. 4, 239-250 (1981).
  • [5] Atçeken, M.: Characterizations for an invariant submanifold of an almost $\alpha -$cosymplectic $(k,\mu ,\nu )-$ space to be totally geodesic. Filomat. 36(9), 2871-2879 (2022).
  • [6] Aktan, N., Balkan, S., Yildirim, M.: On weakly symmetries of almost Kenmotsu $(k,\mu ,\nu )-$spaces. Hacettepe Journal of Mathematics and Statistics. 42(4), 447-453 (2013).
  • [7] Atçeken, M.: Certain results on invariant submanifolds of an almost Kenmotsu $(k,\mu ,\nu )-$space. Arabian Journal of Mathematics. 10, 543-554 (2021).
  • [8] Yıldırım, M., Aktan, N.: Holomorphically planar conformal vector field on almost $\alpha $-cosymplectic $(k,\mu ,\nu )-$spaces. Fundamental Journal of Mathematics and Applications. 6(1), 35-41 (2023).
  • [9] Carriazo, A., Martin-Molina, V.: Almost cosymplectic and almost Kenmotsu $(k,\mu ,\nu )-$space. Mediterranean Journal of Mathematics. 10, 1551-1571 (2013).
  • [10] Dacko, P., Olszak, Z.: On almost cosymplectic $(k,\mu ,\nu )-$spaces. Banach Center Publications. 69(1), 211-220 (2005).
  • [11] Kim, T.W., Pak, H.K: Canonical foliations of certain classses of almost contact metric structures. Acta Mathematica Sinica, English Series. 21(4), 841-856 (2005).
  • [12] Öztürk, H., Aktan, N., Murathan, C.: Almost $\alpha -$% cosymplectic $(k,\mu ,\nu )-$spaces. ArXiv: 10077. 0527 v1.
  • [13] Koufogiorgos, T., Markellos, M., Papantoniou, V.J.: The harmonicity of the Reeb vector fields on contact 3- manifolds. Pacific Journal of Mathematics. 234(2), 325-344 (2008).
  • [14] Pokhariyal, G.P., Mishra, R.S.: Curvature tensors and their relativistic significance II. Yokohama Mathematical Journal. 19(2), 97-103 (1971).
  • [15] Pokhariyal, G.P.: Relativistic significance of curvature tensors. International Journal of Mathematics and Mathematical Sciences. 5(1), 133-139 (1982).

Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space

Year 2024, Volume: 12 Issue: 2, 93 - 100, 14.04.2024
https://doi.org/10.36753/mathenot.1395051

Abstract

In this paper we present invariant submanifolds of an almost $\alpha $-cosymplectic $(k, \mu, \nu)$-space. Then, we gave some results for an invariant submanifold of an almost $\alpha $-cosymplectic $(k,\mu,\nu)$-space to be totally geodesic. As a result, we have discovered some interesting conclusions about invariant submanifolds of an almost cosymplectic $(k, \mu, \nu)$-space.

References

  • [1] Koufogiorgos, T., Tsichlias, C.: On the existence of a new class of contact metric manifolds. Canadian Mathematical Bulletin. 43(4), 440-447 (2000).
  • [2] Goldberg, S.I., Yano, K.: Integrability of almost cosymplectic strustures. Pacific Journal of Mathematics. 31, 373-382 (1969).
  • [3] Küpeli Erken, I.: On a classıfıcation of almost $\alpha -$ cosymplectic manifolds. Khayyam Journal of Mathematics. 5(1), 1-10 (2019).
  • [4] Olszak, Z.: On almost cosymplectic manifolds. Kodai Mathematical Journal. 4, 239-250 (1981).
  • [5] Atçeken, M.: Characterizations for an invariant submanifold of an almost $\alpha -$cosymplectic $(k,\mu ,\nu )-$ space to be totally geodesic. Filomat. 36(9), 2871-2879 (2022).
  • [6] Aktan, N., Balkan, S., Yildirim, M.: On weakly symmetries of almost Kenmotsu $(k,\mu ,\nu )-$spaces. Hacettepe Journal of Mathematics and Statistics. 42(4), 447-453 (2013).
  • [7] Atçeken, M.: Certain results on invariant submanifolds of an almost Kenmotsu $(k,\mu ,\nu )-$space. Arabian Journal of Mathematics. 10, 543-554 (2021).
  • [8] Yıldırım, M., Aktan, N.: Holomorphically planar conformal vector field on almost $\alpha $-cosymplectic $(k,\mu ,\nu )-$spaces. Fundamental Journal of Mathematics and Applications. 6(1), 35-41 (2023).
  • [9] Carriazo, A., Martin-Molina, V.: Almost cosymplectic and almost Kenmotsu $(k,\mu ,\nu )-$space. Mediterranean Journal of Mathematics. 10, 1551-1571 (2013).
  • [10] Dacko, P., Olszak, Z.: On almost cosymplectic $(k,\mu ,\nu )-$spaces. Banach Center Publications. 69(1), 211-220 (2005).
  • [11] Kim, T.W., Pak, H.K: Canonical foliations of certain classses of almost contact metric structures. Acta Mathematica Sinica, English Series. 21(4), 841-856 (2005).
  • [12] Öztürk, H., Aktan, N., Murathan, C.: Almost $\alpha -$% cosymplectic $(k,\mu ,\nu )-$spaces. ArXiv: 10077. 0527 v1.
  • [13] Koufogiorgos, T., Markellos, M., Papantoniou, V.J.: The harmonicity of the Reeb vector fields on contact 3- manifolds. Pacific Journal of Mathematics. 234(2), 325-344 (2008).
  • [14] Pokhariyal, G.P., Mishra, R.S.: Curvature tensors and their relativistic significance II. Yokohama Mathematical Journal. 19(2), 97-103 (1971).
  • [15] Pokhariyal, G.P.: Relativistic significance of curvature tensors. International Journal of Mathematics and Mathematical Sciences. 5(1), 133-139 (1982).
There are 15 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Pakize Uygun 0000-0001-8226-4269

Mehmet Atçeken 0000-0002-1242-4359

Tuğba Mert 0000-0001-8258-8298

Early Pub Date March 18, 2024
Publication Date April 14, 2024
Submission Date November 23, 2023
Acceptance Date January 12, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Uygun, P., Atçeken, M., & Mert, T. (2024). Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Mathematical Sciences and Applications E-Notes, 12(2), 93-100. https://doi.org/10.36753/mathenot.1395051
AMA Uygun P, Atçeken M, Mert T. Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Math. Sci. Appl. E-Notes. April 2024;12(2):93-100. doi:10.36753/mathenot.1395051
Chicago Uygun, Pakize, Mehmet Atçeken, and Tuğba Mert. “Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space”. Mathematical Sciences and Applications E-Notes 12, no. 2 (April 2024): 93-100. https://doi.org/10.36753/mathenot.1395051.
EndNote Uygun P, Atçeken M, Mert T (April 1, 2024) Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Mathematical Sciences and Applications E-Notes 12 2 93–100.
IEEE P. Uygun, M. Atçeken, and T. Mert, “Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space”, Math. Sci. Appl. E-Notes, vol. 12, no. 2, pp. 93–100, 2024, doi: 10.36753/mathenot.1395051.
ISNAD Uygun, Pakize et al. “Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space”. Mathematical Sciences and Applications E-Notes 12/2 (April 2024), 93-100. https://doi.org/10.36753/mathenot.1395051.
JAMA Uygun P, Atçeken M, Mert T. Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Math. Sci. Appl. E-Notes. 2024;12:93–100.
MLA Uygun, Pakize et al. “Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 2, 2024, pp. 93-100, doi:10.36753/mathenot.1395051.
Vancouver Uygun P, Atçeken M, Mert T. Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Math. Sci. Appl. E-Notes. 2024;12(2):93-100.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.