Research Article
BibTex RIS Cite
Year 2025, Volume: 13 Issue: 1, 1 - 11
https://doi.org/10.36753/mathenot.1480183

Abstract

References

  • Sarıgöl, M.A.: On the local properties of factored Fourier series. Applied Mathematics and Computation. 216 (11), 3386-3390 (2010).
  • Gökçe, F.: Compact matrix operators on Banach space of absolutely k -summable series. Turkish Journal of Mathematics. 46(3), 1004-1019 (2022).
  • Gökçe, F.: Absolute Lucas spaces with matrix and compact operators. Mathematical Sciences and Applications E-Notes. 10(1), 27-44 (2022).
  • Gökçe, F.: Compact and matrix operators on the space $\left|N_{p}^{\theta} \right|_{k}$. Fundamental Journal of Mathematics and Applications. 4(2), 124-133 (2021).
  • Gökçe, F., Sarıgöl, M.A.: Some matrix and compact operators of the absolute Fibonacci series spaces. Kragujevac Journal of Mathematics. 44 (2), 273–286 (2020).
  • Gökçe, F., Sarıgöl, M.A.: On absolute Euler spaces and related matrix operators. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 90(5), 769-775 (2020).
  • Gökçe, F.: Characterizations of matrix and compact operators on BK spaces. Universal Journal of Mathematics and Applications. 6(2), 76-85 (2023).
  • Daglı, M. C., Yaying, T.: Some new paranormed sequence spaces derived by regular Tribonacci matrix. The Journal of Analysis. 31(1), 109-127 (2023).
  • Devletli, U., Ilkhan Kara, M.: New Banach sequence spaces defined by Jordan Totient function. Communications in Advanced Mathematical Sciences, 6(4), 211-225 (2023).
  • FLett, T.M.: On an extension of absolute summability and some theorems of Littlewood and Paley. Proceedings of the London Mathematical Society. 7, 113-141 (1957).
  • Ilkhan Kara, M., Bayrakdar, M. A.: A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely summable sequences. Communications in Advanced Mathematical Sciences, 4 (1), 14-25 (2021).
  • Ilkhan, M.: Matrix domain of a regular matrix derived by Euler Totient function in the spaces c0 and c. Mediterranean Journal of Mathematics. 17(1), 1-21 (2020).
  • Kara E. E., Ilkhan, M.: Some properties of generalized Fibonacci sequence spaces. Linear Multilinear Algebra. 64 (11), 2208-2223 (2016).
  • Kara E. E., Ilkhan, M.: On some Banach sequence spaces derived by a new band matrix. British Journal of Mathematics & Computer Science. 9(2), 141-159 (2015).
  • Karakas, M.: Tribonacci-Lucas Sequence Spaces. Journal of the Institute of Science and Technology. 13 (1), 548-562 (2023).
  • Mohapatra, R.N., Sarıgöl, M.A.: On matrix operators on the series spaces $\left|\bar N _{p}^{\theta}\right|_{k}$. Ukrainian Mathematical Journal. 69 (11), 1524-1533 (2017).
  • Mursaleen, M., Ba¸sar, F., Altay, B.:On the Euler sequence spaces which include the spaces lp and l1 II. Nonlinear Analysis: Theory, Methods & Applications. 65 (3), 707–717 (2006).
  • Yaying, T., Kara, M. I.: On sequence spaces defined by the domain of tribonacci matrix in c0 and c. Korean Journal of Mathematics. 29(1), 25-40 (2021).
  • Yaying, T., Hazarika, B.; On sequence spaces defined by the domain of a regular Tribonacci matrix. Mathematica Slovaca. 70 (3), 697-706 (2020).
  • Yalavigi, C.C.: Properties of Tribonacci numbers. The Fibonacci Quarterly. 10, 231–246 (1972).
  • Stieglitz, M., Tietz, H.: Matrix transformationen von Folgenraumen. Eine Ergebnisübersicht. Mathematische Zeitschrift. 154 (1), 1-16 (1977).
  • Sarıgöl, M.A.: Extension of Mazhar’s theorem on summability factors. Kuwait Journal of Science. 42 (3), 28-35 (2015).
  • Maddox, I.J.: Elements of Functional analysis. Cambridge University Press, London, New York, 1970.
  • Rakocevic, V.: Measures of noncompactness and some applications. Filomat. 12 (2), 87-120 (1998).
  • Malkowsky, E., Rakocevic, V.: An introduction into the theory of sequence space and measures of noncompactness. Zbornik Radova. 9 (17), 143-234 (2000).
  • Malkowsky, E., Rakocevic, V.: On matrix domains of triangles. Applied Mathematics and Computation. 189 (2), 1146-1163 (2007).
  • Wilansky, A.: Summability Through Functional Analysis. Mathematics Studies. 85. North Holland, Amsterdam, 1984.
  • Jarrah, A.M., Malkowsky, E.: Ordinary absolute and strong summability and matrix transformations. Filomat. 17, 59-78 (2003).

On Absolute Tribonacci Series Spaces and Some Matrix Operators

Year 2025, Volume: 13 Issue: 1, 1 - 11
https://doi.org/10.36753/mathenot.1480183

Abstract

In this article, the absolute Tribonacci space $\left|T_\theta\right|_{q}$ is introduced as the domain of the Tribonacci matrix on $\ell_q$. First, certain algebraic and topological structures such as $BK-$space, isomorphism, duals, and Schauder basis are studied. Then, some characterizations of compact and matrix operators on this space are given their norms, and Hausdorff
measures of noncompactness are determined.

References

  • Sarıgöl, M.A.: On the local properties of factored Fourier series. Applied Mathematics and Computation. 216 (11), 3386-3390 (2010).
  • Gökçe, F.: Compact matrix operators on Banach space of absolutely k -summable series. Turkish Journal of Mathematics. 46(3), 1004-1019 (2022).
  • Gökçe, F.: Absolute Lucas spaces with matrix and compact operators. Mathematical Sciences and Applications E-Notes. 10(1), 27-44 (2022).
  • Gökçe, F.: Compact and matrix operators on the space $\left|N_{p}^{\theta} \right|_{k}$. Fundamental Journal of Mathematics and Applications. 4(2), 124-133 (2021).
  • Gökçe, F., Sarıgöl, M.A.: Some matrix and compact operators of the absolute Fibonacci series spaces. Kragujevac Journal of Mathematics. 44 (2), 273–286 (2020).
  • Gökçe, F., Sarıgöl, M.A.: On absolute Euler spaces and related matrix operators. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 90(5), 769-775 (2020).
  • Gökçe, F.: Characterizations of matrix and compact operators on BK spaces. Universal Journal of Mathematics and Applications. 6(2), 76-85 (2023).
  • Daglı, M. C., Yaying, T.: Some new paranormed sequence spaces derived by regular Tribonacci matrix. The Journal of Analysis. 31(1), 109-127 (2023).
  • Devletli, U., Ilkhan Kara, M.: New Banach sequence spaces defined by Jordan Totient function. Communications in Advanced Mathematical Sciences, 6(4), 211-225 (2023).
  • FLett, T.M.: On an extension of absolute summability and some theorems of Littlewood and Paley. Proceedings of the London Mathematical Society. 7, 113-141 (1957).
  • Ilkhan Kara, M., Bayrakdar, M. A.: A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely summable sequences. Communications in Advanced Mathematical Sciences, 4 (1), 14-25 (2021).
  • Ilkhan, M.: Matrix domain of a regular matrix derived by Euler Totient function in the spaces c0 and c. Mediterranean Journal of Mathematics. 17(1), 1-21 (2020).
  • Kara E. E., Ilkhan, M.: Some properties of generalized Fibonacci sequence spaces. Linear Multilinear Algebra. 64 (11), 2208-2223 (2016).
  • Kara E. E., Ilkhan, M.: On some Banach sequence spaces derived by a new band matrix. British Journal of Mathematics & Computer Science. 9(2), 141-159 (2015).
  • Karakas, M.: Tribonacci-Lucas Sequence Spaces. Journal of the Institute of Science and Technology. 13 (1), 548-562 (2023).
  • Mohapatra, R.N., Sarıgöl, M.A.: On matrix operators on the series spaces $\left|\bar N _{p}^{\theta}\right|_{k}$. Ukrainian Mathematical Journal. 69 (11), 1524-1533 (2017).
  • Mursaleen, M., Ba¸sar, F., Altay, B.:On the Euler sequence spaces which include the spaces lp and l1 II. Nonlinear Analysis: Theory, Methods & Applications. 65 (3), 707–717 (2006).
  • Yaying, T., Kara, M. I.: On sequence spaces defined by the domain of tribonacci matrix in c0 and c. Korean Journal of Mathematics. 29(1), 25-40 (2021).
  • Yaying, T., Hazarika, B.; On sequence spaces defined by the domain of a regular Tribonacci matrix. Mathematica Slovaca. 70 (3), 697-706 (2020).
  • Yalavigi, C.C.: Properties of Tribonacci numbers. The Fibonacci Quarterly. 10, 231–246 (1972).
  • Stieglitz, M., Tietz, H.: Matrix transformationen von Folgenraumen. Eine Ergebnisübersicht. Mathematische Zeitschrift. 154 (1), 1-16 (1977).
  • Sarıgöl, M.A.: Extension of Mazhar’s theorem on summability factors. Kuwait Journal of Science. 42 (3), 28-35 (2015).
  • Maddox, I.J.: Elements of Functional analysis. Cambridge University Press, London, New York, 1970.
  • Rakocevic, V.: Measures of noncompactness and some applications. Filomat. 12 (2), 87-120 (1998).
  • Malkowsky, E., Rakocevic, V.: An introduction into the theory of sequence space and measures of noncompactness. Zbornik Radova. 9 (17), 143-234 (2000).
  • Malkowsky, E., Rakocevic, V.: On matrix domains of triangles. Applied Mathematics and Computation. 189 (2), 1146-1163 (2007).
  • Wilansky, A.: Summability Through Functional Analysis. Mathematics Studies. 85. North Holland, Amsterdam, 1984.
  • Jarrah, A.M., Malkowsky, E.: Ordinary absolute and strong summability and matrix transformations. Filomat. 17, 59-78 (2003).
There are 28 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Fadime Gökçe 0000-0003-1819-3317

Early Pub Date December 10, 2024
Publication Date
Submission Date May 7, 2024
Acceptance Date October 21, 2024
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Gökçe, F. (2024). On Absolute Tribonacci Series Spaces and Some Matrix Operators. Mathematical Sciences and Applications E-Notes, 13(1), 1-11. https://doi.org/10.36753/mathenot.1480183
AMA Gökçe F. On Absolute Tribonacci Series Spaces and Some Matrix Operators. Math. Sci. Appl. E-Notes. December 2024;13(1):1-11. doi:10.36753/mathenot.1480183
Chicago Gökçe, Fadime. “On Absolute Tribonacci Series Spaces and Some Matrix Operators”. Mathematical Sciences and Applications E-Notes 13, no. 1 (December 2024): 1-11. https://doi.org/10.36753/mathenot.1480183.
EndNote Gökçe F (December 1, 2024) On Absolute Tribonacci Series Spaces and Some Matrix Operators. Mathematical Sciences and Applications E-Notes 13 1 1–11.
IEEE F. Gökçe, “On Absolute Tribonacci Series Spaces and Some Matrix Operators”, Math. Sci. Appl. E-Notes, vol. 13, no. 1, pp. 1–11, 2024, doi: 10.36753/mathenot.1480183.
ISNAD Gökçe, Fadime. “On Absolute Tribonacci Series Spaces and Some Matrix Operators”. Mathematical Sciences and Applications E-Notes 13/1 (December 2024), 1-11. https://doi.org/10.36753/mathenot.1480183.
JAMA Gökçe F. On Absolute Tribonacci Series Spaces and Some Matrix Operators. Math. Sci. Appl. E-Notes. 2024;13:1–11.
MLA Gökçe, Fadime. “On Absolute Tribonacci Series Spaces and Some Matrix Operators”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 1, 2024, pp. 1-11, doi:10.36753/mathenot.1480183.
Vancouver Gökçe F. On Absolute Tribonacci Series Spaces and Some Matrix Operators. Math. Sci. Appl. E-Notes. 2024;13(1):1-11.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.