Research Article
BibTex RIS Cite

Enhancing Generalized Interpolative Contraction Through Simulation Functions

Year 2025, Volume: 13 Issue: 1, 54 - 64, 08.03.2025
https://doi.org/10.36753/mathenot.1573566

Abstract

In the present manuscript, we elucidate a comprehensive framework for the generalized interpolative $\alpha-(\psi,\varphi)_Z-$contractive mapping, thereby extending the foundational theoretical constructs to augment its utility within the domain of advanced mathematical analysis. The investigation encompasses a meticulous examination of fixed point results within the context of non-Archimedean modular metric spaces, which are characterized by their distinctive structural properties that diverge from those of conventional metric spaces.
Moreover, we apply the results attained to substantiate the existence and uniqueness of solutions pertaining to nonlinear Fredholm integral equations. This aspect of our inquiry underscores the practical implications of our theoretical advancements and provides a rigorous framework for the resolution of complex integral equations through the principles of established contractive mappings.

References

  • [1] Khojasteh, F., Shukla, S., Radenovic, S.: A new approach to the study of fixed point theorems via simulation functions.Filomat. 29 (6), 1189-1194 (2015).
  • [2] Radenovic, S., Chandok, S.:Simulation type functions and coincidence point results. Filomat. 32 (1), 141-147 (2018).
  • [3] Samet, B.: Best proximity point results in partially ordered metric spaces via simulation functions. Fixed Point Theory and Applications. 2015 (232), (2015).
  • [4] Tchier, F., Vetro, C., Vetro, F.: Best approximation and variational inequality problems involving a simulation function. Fixed Point Theory and Applications. 2016 (26), (2016).
  • [5] Sawangsup, K., Sintunavarat, W.: Fixed point results for orthogonal Z−contraction mappings in O−complete metric spaces. International Journal of Applied Physic and Mathematics. 10 (1), 33-40 (2020).
  • [6] Joonaghany, G.H., Farajzadeh, A., Azhini, M., Khojasteh, F.:A new common fixed point theorem for Suzuki type contraction via generalized Ψ−simulation functions. Sahand Communications in Mathematical Analysis. 16 (1), 129-148 (2019).
  • [7] Joonaghany, G. H., Karapınar, E., Khojasteh, F., Radenovic, S.: Study of Γ−simulation functions, ZΓ−contractions and revisiting the L−contractions. Filomat. 35 (1), 201-224 (2021).
  • [8] Karapınar, E.: Revisiting the Kannan type contractions via interpolation. Advances in the Theory of Nonlinear Analysis and its Application. 2, 85–87 (2018).
  • [9] Karapınar, E., Agarwal, R. P., Aydi, H.: Interpolative Reich–Rus–Ciric type contractions on partial metric spaces. Mathematics. 6, 256 (2018).
  • [10] Kesik, D., Büyükkaya, A., Öztürk, M.: On modified interpolative almost E−type contraction in partial modular b−metric spaces. Axioms. 12 (7), 669 (2023).
  • [11] Karapınar, E., Fulga, A., Roldán López de Hierro, A. F.:Fixed point theory in the setting of (α, β, ϕ, ψ)interpolative contractions. Advances in Difference Equations. 2021, 339 (2021).
  • [12] Karapınar, E., Aydi, H., Mitrovic, D.: On interpolative Boyd–Wong and Matkowski type contractions. Canadian Mathematical Bulletin. 11(2), 204–212 (2020).
  • [13] Karapınar, E., Fulga, A., Yesilkaya, S.S.: New results on Perov-interpolative contractions of Suzuki type mappings. Journal of Function Spaces. 2021, Article ID: 9587604.
  • [14] Benterki, A.: Some data dependences results from using C−class functions in partial metric spaces. Universal Journal of Matematics and Applications. 7 (4), 152-162 (2024).
  • [15] Duman, O.: Controllability analysis of fractional order delay differential equations via contraction principle. Journal of Matematical Sciences and Modelling. 7(3), 121-127 (2024).
  • [16] Saleem, N., Ahmad, H., Aydi, H., Gaba, Y.U.: On some coincidence best proximity point results. Journal of Mathematics. 2021, Article ID: 8005469.
  • [17] Saleem, N., I¸sık, H., Khaleeq, S., Park, C.: Interpolative Ciri´c-Reich-Rus-type best proximity point results with applications. AIMS Mathematics. 7 (6), 9731–9747 (2022).
  • [18] Bashir, S. Saleem, N., Husnine, S.M.: Fixed point results of a generalized reversed F-contraction mapping and itsapplication. AIMS Mathematics. 6 (8), 8728–8741 (2021).
  • [19] Latif, A., Saleem, N., Abbas, M.: α-optimal best proximity point result involving proximal contractionmappings in fuzzy metric space. Journal of Nonlinear Sciences and Applications. (10), 92–103 (2017).
  • [20] Chistyakov, V.V.: Modular metric spaces, I: Basic concepts. Nonlinear Analysis. 72, 1-14 (2010).
  • [21] Chistyakov, V.V.:Modular metric spaces, II: Application to superposition operators. Nonlinear Analysis. 72, 15-30 (2010).
  • [22] Girgin, E., Büyükkaya, A., Kuru, N. K., Younis, M., Öztürk, M.:Analysis of Caputo-type non-linear fractional differential equations and their Ulam–Hyers stability. Fractal and Fractional. 8 (10), 558 (2024).
  • [23] Girgin, E., Büyükkaya, A., Kuru, N.K., Öztürk, M.: On the impact of some fixed point theorems on dynamic programming and RLC circuit models in R-modular b-metric-like spaces. Axioms. 13(7), 441 (2024).
  • [24] Büyükkaya, A., Öztürk, M.: Multivalued Sehgal-Proinov type contraction mappings involving rational terms in modular metric spaces. Filomat. 38 (10), 3563-3576 (2024).
  • [25] Büyükkaya, A., Öztürk, M.: On Suzuki-Proinov type contractions in modular b-metric spaces with an application. Communications in Advanced Mathematical Sciences. 7 (1), 27-41 (2024).
  • [26] Khan, M. S., Swaleh M., Sessa, S.:Fixed point theorems by altering distances between the point. Bulletin of the Australian Mathematical Society. 30, 1-9 (1984).
  • [27] Berinde, V.:Generalized contractions in quasimetric spaces. Seminar on fixed point theory, Babe¸s-Bolyai University. 3, 3-9 (1993).
  • [28] Samet, B., Vetro, C., Vetro, P.:Fixed point theorems for α − ψ−contractive type mappings. Nonlinear Analysis. 75, 2154-2165 (2012).
  • [29] Karapınar, E., Kumam, P., Salimi, P.: On a α − ψ−Meir-Keeler contractive mappings. Fixed Point Theory and Applications. 2013, 94 (2013).
Year 2025, Volume: 13 Issue: 1, 54 - 64, 08.03.2025
https://doi.org/10.36753/mathenot.1573566

Abstract

References

  • [1] Khojasteh, F., Shukla, S., Radenovic, S.: A new approach to the study of fixed point theorems via simulation functions.Filomat. 29 (6), 1189-1194 (2015).
  • [2] Radenovic, S., Chandok, S.:Simulation type functions and coincidence point results. Filomat. 32 (1), 141-147 (2018).
  • [3] Samet, B.: Best proximity point results in partially ordered metric spaces via simulation functions. Fixed Point Theory and Applications. 2015 (232), (2015).
  • [4] Tchier, F., Vetro, C., Vetro, F.: Best approximation and variational inequality problems involving a simulation function. Fixed Point Theory and Applications. 2016 (26), (2016).
  • [5] Sawangsup, K., Sintunavarat, W.: Fixed point results for orthogonal Z−contraction mappings in O−complete metric spaces. International Journal of Applied Physic and Mathematics. 10 (1), 33-40 (2020).
  • [6] Joonaghany, G.H., Farajzadeh, A., Azhini, M., Khojasteh, F.:A new common fixed point theorem for Suzuki type contraction via generalized Ψ−simulation functions. Sahand Communications in Mathematical Analysis. 16 (1), 129-148 (2019).
  • [7] Joonaghany, G. H., Karapınar, E., Khojasteh, F., Radenovic, S.: Study of Γ−simulation functions, ZΓ−contractions and revisiting the L−contractions. Filomat. 35 (1), 201-224 (2021).
  • [8] Karapınar, E.: Revisiting the Kannan type contractions via interpolation. Advances in the Theory of Nonlinear Analysis and its Application. 2, 85–87 (2018).
  • [9] Karapınar, E., Agarwal, R. P., Aydi, H.: Interpolative Reich–Rus–Ciric type contractions on partial metric spaces. Mathematics. 6, 256 (2018).
  • [10] Kesik, D., Büyükkaya, A., Öztürk, M.: On modified interpolative almost E−type contraction in partial modular b−metric spaces. Axioms. 12 (7), 669 (2023).
  • [11] Karapınar, E., Fulga, A., Roldán López de Hierro, A. F.:Fixed point theory in the setting of (α, β, ϕ, ψ)interpolative contractions. Advances in Difference Equations. 2021, 339 (2021).
  • [12] Karapınar, E., Aydi, H., Mitrovic, D.: On interpolative Boyd–Wong and Matkowski type contractions. Canadian Mathematical Bulletin. 11(2), 204–212 (2020).
  • [13] Karapınar, E., Fulga, A., Yesilkaya, S.S.: New results on Perov-interpolative contractions of Suzuki type mappings. Journal of Function Spaces. 2021, Article ID: 9587604.
  • [14] Benterki, A.: Some data dependences results from using C−class functions in partial metric spaces. Universal Journal of Matematics and Applications. 7 (4), 152-162 (2024).
  • [15] Duman, O.: Controllability analysis of fractional order delay differential equations via contraction principle. Journal of Matematical Sciences and Modelling. 7(3), 121-127 (2024).
  • [16] Saleem, N., Ahmad, H., Aydi, H., Gaba, Y.U.: On some coincidence best proximity point results. Journal of Mathematics. 2021, Article ID: 8005469.
  • [17] Saleem, N., I¸sık, H., Khaleeq, S., Park, C.: Interpolative Ciri´c-Reich-Rus-type best proximity point results with applications. AIMS Mathematics. 7 (6), 9731–9747 (2022).
  • [18] Bashir, S. Saleem, N., Husnine, S.M.: Fixed point results of a generalized reversed F-contraction mapping and itsapplication. AIMS Mathematics. 6 (8), 8728–8741 (2021).
  • [19] Latif, A., Saleem, N., Abbas, M.: α-optimal best proximity point result involving proximal contractionmappings in fuzzy metric space. Journal of Nonlinear Sciences and Applications. (10), 92–103 (2017).
  • [20] Chistyakov, V.V.: Modular metric spaces, I: Basic concepts. Nonlinear Analysis. 72, 1-14 (2010).
  • [21] Chistyakov, V.V.:Modular metric spaces, II: Application to superposition operators. Nonlinear Analysis. 72, 15-30 (2010).
  • [22] Girgin, E., Büyükkaya, A., Kuru, N. K., Younis, M., Öztürk, M.:Analysis of Caputo-type non-linear fractional differential equations and their Ulam–Hyers stability. Fractal and Fractional. 8 (10), 558 (2024).
  • [23] Girgin, E., Büyükkaya, A., Kuru, N.K., Öztürk, M.: On the impact of some fixed point theorems on dynamic programming and RLC circuit models in R-modular b-metric-like spaces. Axioms. 13(7), 441 (2024).
  • [24] Büyükkaya, A., Öztürk, M.: Multivalued Sehgal-Proinov type contraction mappings involving rational terms in modular metric spaces. Filomat. 38 (10), 3563-3576 (2024).
  • [25] Büyükkaya, A., Öztürk, M.: On Suzuki-Proinov type contractions in modular b-metric spaces with an application. Communications in Advanced Mathematical Sciences. 7 (1), 27-41 (2024).
  • [26] Khan, M. S., Swaleh M., Sessa, S.:Fixed point theorems by altering distances between the point. Bulletin of the Australian Mathematical Society. 30, 1-9 (1984).
  • [27] Berinde, V.:Generalized contractions in quasimetric spaces. Seminar on fixed point theory, Babe¸s-Bolyai University. 3, 3-9 (1993).
  • [28] Samet, B., Vetro, C., Vetro, P.:Fixed point theorems for α − ψ−contractive type mappings. Nonlinear Analysis. 75, 2154-2165 (2012).
  • [29] Karapınar, E., Kumam, P., Salimi, P.: On a α − ψ−Meir-Keeler contractive mappings. Fixed Point Theory and Applications. 2013, 94 (2013).
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Ekber Girgin 0000-0002-8913-5416

Early Pub Date March 6, 2025
Publication Date March 8, 2025
Submission Date October 25, 2024
Acceptance Date February 9, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Girgin, E. (2025). Enhancing Generalized Interpolative Contraction Through Simulation Functions. Mathematical Sciences and Applications E-Notes, 13(1), 54-64. https://doi.org/10.36753/mathenot.1573566
AMA Girgin E. Enhancing Generalized Interpolative Contraction Through Simulation Functions. Math. Sci. Appl. E-Notes. March 2025;13(1):54-64. doi:10.36753/mathenot.1573566
Chicago Girgin, Ekber. “Enhancing Generalized Interpolative Contraction Through Simulation Functions”. Mathematical Sciences and Applications E-Notes 13, no. 1 (March 2025): 54-64. https://doi.org/10.36753/mathenot.1573566.
EndNote Girgin E (March 1, 2025) Enhancing Generalized Interpolative Contraction Through Simulation Functions. Mathematical Sciences and Applications E-Notes 13 1 54–64.
IEEE E. Girgin, “Enhancing Generalized Interpolative Contraction Through Simulation Functions”, Math. Sci. Appl. E-Notes, vol. 13, no. 1, pp. 54–64, 2025, doi: 10.36753/mathenot.1573566.
ISNAD Girgin, Ekber. “Enhancing Generalized Interpolative Contraction Through Simulation Functions”. Mathematical Sciences and Applications E-Notes 13/1 (March 2025), 54-64. https://doi.org/10.36753/mathenot.1573566.
JAMA Girgin E. Enhancing Generalized Interpolative Contraction Through Simulation Functions. Math. Sci. Appl. E-Notes. 2025;13:54–64.
MLA Girgin, Ekber. “Enhancing Generalized Interpolative Contraction Through Simulation Functions”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 1, 2025, pp. 54-64, doi:10.36753/mathenot.1573566.
Vancouver Girgin E. Enhancing Generalized Interpolative Contraction Through Simulation Functions. Math. Sci. Appl. E-Notes. 2025;13(1):54-6.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.