Research Article
BibTex RIS Cite

A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces

Year 2025, Volume: 13 Issue: 4, 179 - 189
https://doi.org/10.36753/mathenot.1720763

Abstract

Following the studies on gradual numbers, which are expressed with membership functions and have many important application areas in daily life, studies on gradual normed linear spaces (GNLS) have also gained speed in recent years. On the other hand, it is thought that the definition of $\mathcal{I-}$statistical convergence, which generalizes many types of convergence, for a sequence in these spaces, and the results obtained will be important. For this reason, lacunary $\mathcal{I-}$statistical convergence in gradual normed linear spaces is defined in this paper. Therefore, more general results were obtained compared to previous studies in this area.

References

  • [1] Zadeh, L. A.: Fuzzy sets. Information and Control. 8, 338-353 (1965).
  • [2] Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy interval analysis. IEEE Transactions on Fuzzy Systems. 16, 388-402 (2008).
  • [3] Aiche, F., Dubois, D.: Possibility and gradual number approaches to ranking methods for random fuzzy intervals. Communications in Computer and Information Science. 299, 9-18 (2012).
  • [4] Ettefagh, M., Etemad, S., Azari, F. Y.: On some properties of sequences in gradual normed spaces. Asian-European Journal of Mathematics. 1(4), 2050085 (2020) .
  • [5] Ettefagh, M., Azari, F. Y., Etemad, S.: On some topological properties in gradual normed spaces. Facta Universitatis, Series: Mathematics and Informatics. 35, 549-559 (2020).
  • [6] Sadeqi, I., Azari, F. Y.: Gradual normed linear space. Iranian Journal of Fuzzy Systems. 8(5), 131-139 (2011).
  • [7] Debbarma, H., Choudhury, C., Debnath,S.: Studies on some sequence spaces in gradual normed linear space. Applied Mathematics E-Notes. 24, 80-88 (2024).
  • [8] Debbarma, H., Debnath, S.: Some statistically convergent sequence spaces over gradual normed linear space. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis. 32, 55-65 (2025).
  • [9] Debnath, S., Debbarma, H.: On $\mathcal{I-}$statistical convergent difference sequence spaces in GNLS. Advances in Mathematical Sciences and Applications. 33(2), 741-754 (2024).
  • [10] Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Computing. 12, 165-175 (2007).
  • [11] Kostyrko, P., Šalát, T., Wileynski, W.: $\mathcal{I-}$Convergence. Real Analysis Exchange. 26(2), 669-680 (2000).
  • [12] Fast, H.: Sur la convergence statistique. Colloquium Mathematicum. 2, 241-244 (1951).
  • [13] Steinhaus, H.: Sur la convergence ordiniaire et la convergence asymptotique. Colloquium Mathematicum. 2 , 73-84 (1951).
  • [14] Fridy, J. A., Orhan, C.: Lacunary statistical convergence. Pacific Journal of Mathematics. 160, 43-51 (1993).
  • [15] Choudhury, C., Debnath, S.: On lacunary statistical convergence of sequences in gradual normed linear spaces. Annals of the University of Craiova, Mathematics and Computer Science Series. 49(1), 110-119 (2022).
  • [16] Savaş, E., Das, P.: A generalized statistical convergence via ideals. Applied Mathematics Letters. 24, 826-830 (2011).
  • [17] Das, P., Savaş, E.: On $\mathcal{I-}$statistical and $\mathcal{I-}$−lacunary statistical convergence of order $\alpha $. Bulletin of the Iranian Mathematical Society. 40(2), 459-472 (2014).
  • [18] Demir, N., Gümüş, H.: A study on lacunary statistical convergence of multiset sequences. Sigma Journal of Engineering and Natural Sciences. 42(5), 1575-1580 (2024).
  • [19] Choudhury, C., Debnath, S.: On $\mathcal{I-}$convergence of sequences in gradual normed linear spaces. Facta Universitatis-Series Mathematics and Informatics. 36(3), 595-604. (2021).
  • [20] Choudhury, C., Debnath, S.: On I−statistical convergence of sequences in gradual normed linear spaces. Matematicki Vesnik. 74(3), 218-228 (2022).
  • [21] Choudhury, C., Debnath, S., Esi, A.: On $\mathcal{I}^{K}\mathcal{-}$−convergence of sequences in gradual normed linear spaces. The Journal of Analysis. 30, 1455-1465 (2022).
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Hafize Gumus 0000-0001-8972-5961

Seyma Bolat This is me 0000-0002-5693-0712

Early Pub Date October 25, 2025
Publication Date October 27, 2025
Submission Date July 6, 2025
Acceptance Date August 25, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Gumus, H., & Bolat, S. (2025). A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces. Mathematical Sciences and Applications E-Notes, 13(4), 179-189. https://doi.org/10.36753/mathenot.1720763
AMA Gumus H, Bolat S. A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces. Math. Sci. Appl. E-Notes. October 2025;13(4):179-189. doi:10.36753/mathenot.1720763
Chicago Gumus, Hafize, and Seyma Bolat. “A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces”. Mathematical Sciences and Applications E-Notes 13, no. 4 (October 2025): 179-89. https://doi.org/10.36753/mathenot.1720763.
EndNote Gumus H, Bolat S (October 1, 2025) A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces. Mathematical Sciences and Applications E-Notes 13 4 179–189.
IEEE H. Gumus and S. Bolat, “A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces”, Math. Sci. Appl. E-Notes, vol. 13, no. 4, pp. 179–189, 2025, doi: 10.36753/mathenot.1720763.
ISNAD Gumus, Hafize - Bolat, Seyma. “A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces”. Mathematical Sciences and Applications E-Notes 13/4 (October2025), 179-189. https://doi.org/10.36753/mathenot.1720763.
JAMA Gumus H, Bolat S. A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces. Math. Sci. Appl. E-Notes. 2025;13:179–189.
MLA Gumus, Hafize and Seyma Bolat. “A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 4, 2025, pp. 179-8, doi:10.36753/mathenot.1720763.
Vancouver Gumus H, Bolat S. A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces. Math. Sci. Appl. E-Notes. 2025;13(4):179-8.

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.