Research Article
BibTex RIS Cite

On the Harmonic Energy and Estrada index of Graphs

Year 2019, Volume: 1 Issue: 1, 1 - 20, 02.01.2019

Abstract

Let G be a graph with n vertices and di is the degree of its i-th vertex( di is

the degree of vi), then the Harmonic matrix of G is the square matrix of order n

whose (i; j)-entry is equal to 2

di+dj

if the i-th and j-th vertex of G are adjacent,

and zero otherwise. The main purposes of this paper are to introduce the

Harmonic Estrada index of a graph. In addition we establish upper and lower

bounds for these energy and index separately also we investigate the relations

between the Harmonic Estrada index and the Harmonic energy.

References

  • [1] N. Alawiah, N. J. Rad, A. Jahanbani, H. Kamarulhaili, New Upper Boundson the Energy of a Graph, MATCH Commun. Math. Comput. Chem. 79, pp.287-301.
  • [2] S. Bozkurt, D. Bozkurt, Randic Energy and Randic Estrada index of a Graph,Eur. J. Pure Appl. Math, 5 (2012), 88-96.
  • [3] D. Cvetkovic, P. Rowlinson, S. Simic, An Introduction to the Theory of GraphSpectra, Cambridge Univ. Press, Cambridge, 2010.
  • [4] Z. Cvetkovski, Inequalities ,Theorems, Techniques and Selected Problems,Springer-Verlag Berlin Heidelberg 2012.
  • [5] J. A. De la Pe~na, I. Gutman, J. Rada, Estimating the Estrada Index, Lin.Algebra Appl. 427, (2007), 70-76.
  • [6] H. Deng, S. Radenkovic, I. Gutman, The Estrada Index, in: D. Cvetkovic, I.Gutman (Eds.), Applications of Graph Spectra, Math. Inst., Belgrade, (2009),123-140.
  • [7] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On theharmonic index and the chromatic number of a graph, preprint.
  • [8] H. Deng, Z. Tang, J. Zhang, On the harmonic index and the radius of a graph,preprint.
  • [9] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On har-monic indices of trees, unicyclic graphs and bicyclic graphs, preprint.
  • [10] H. Deng, S. Balachandran, S. K.Ayyaswamy, Y. B.Venkatakrishnan, On theharmonic index and the chromatic number of a graph,Discrete Appl. Math,161(2013), 2740-2744
  • [11] B. Deng, Sh. Wang, I. Gutman, Resolvent Estrada index of Cycles and Paths,APPL. MATH. INFORM. AND MECH, (2016) 1 , 1-10.
  • [12] S. S. Dragomir, On some inequalities (Romanian), Caiete Metodico Stiinti c,Faculty of Mathematics, Timisoara University, Romania. 13 1984.
  • [13] Z. Du, B. Zhou, On sum-connectivity index of bicyclic graphs, Bull. Malays.Math. Sci. Soc. (in press).
  • [14] Z. Du, B. Zhou, N. Trinajstic, Minimum general sum-connectivity index ofunicyclic graphs, J. Math. Chem. 48 (2010), 697-703.
  • [15] Z. Du, B. Zhou, N. Trinajstic, Minimum sum-connectivity indices of trees andunicyclic graphs of a given matching number, J. Math. Chem. 47 (2010), 842-855.
  • [16] E. Estrada, J. A. Rodriguez-Velazguez, Subgraph Centrality in Complex Net-works, Phys. Rev. E. 71, (2005), 056103-056103-9.
  • [17] A. Gungor, A. Sinan Cevik, On the Harary energy and Harary Estrada indexof a graph, MATCH Commun. Math. Comput. Chem, 64 (2010), 280-296.
  • [18] O. Favaron, M. Mahio, J. F. Sacle, Some eigenvalue properties in graphs (Con-jectures of Grati-II), Discrete Math. 111 (1993), 197-220.
  • [19] I. Gutman, M. Milun, N. Trinajstic, Comment on the paper: Properties of thelatent roots of a matrix. Estimation of -electron energies by B. J. McClelland,J. Chem. Phys. 59 (1973), 2772-2774.
  • [20] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry,Springer, Berlin, 1986.
  • [21] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A.Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics andApplications, Springer-Verlag, Berlin, (2001), 196-211.
  • [22] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, NewYork, 1985.
  • [23] S. M. Hosamani, B. B. Kulkarni, R. G. Boli, V. M. Gadag, QSPR analysis ofcertain graph theoretical matrices and their corresponding energy, Appl. Math.Nonlin. Sci 2 (2017), 131-150.
  • [24] A. Jahanbani, Upper bounds for the energy of graphs, MATCH Commun.Math. Comput. Chem. 79 pp. 275-286.
  • [25] A. Jahanbani, Lower bounds for the energy of graphs, AKCE InternationalJournal of Graphs and Combinatorics. 15 (2018) 88-96.
  • [26] A. Jahanbani, Some new lower bounds for energy of graphs, Applied Mathe-matics and Computation, 296 ( 2017), 233-238.
  • [27] X. Li, Y. Shi, I. Gutman, Graph Energy,Springer, New York, 2012.
  • [28] A. Lupas, Inequalities for the roots of a class of polynomials, Publ. Elektrotehn.Fak. Ser. Math. Fiz. 594 (1977) 79-85.
  • [29] N. Rad, A. Jahanbani, I. Gutman, Zagreb Energy and Zagreb Estrada indexof Graphs, MATCH Commun. Math. Comput. Chem, 79 (2018), 371-386.
  • [30] B. Zhou, Z. Du, Some lower bounds for estrada index, Iranian Journal ofMathematical Chemistry. 1, (2010), 67- 72.
  • [31] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012), 561-566.
  • [32] B. Zhou, N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46(2009), 1252-1270.
  • [33] B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47(2010), 210-218.
Year 2019, Volume: 1 Issue: 1, 1 - 20, 02.01.2019

Abstract

References

  • [1] N. Alawiah, N. J. Rad, A. Jahanbani, H. Kamarulhaili, New Upper Boundson the Energy of a Graph, MATCH Commun. Math. Comput. Chem. 79, pp.287-301.
  • [2] S. Bozkurt, D. Bozkurt, Randic Energy and Randic Estrada index of a Graph,Eur. J. Pure Appl. Math, 5 (2012), 88-96.
  • [3] D. Cvetkovic, P. Rowlinson, S. Simic, An Introduction to the Theory of GraphSpectra, Cambridge Univ. Press, Cambridge, 2010.
  • [4] Z. Cvetkovski, Inequalities ,Theorems, Techniques and Selected Problems,Springer-Verlag Berlin Heidelberg 2012.
  • [5] J. A. De la Pe~na, I. Gutman, J. Rada, Estimating the Estrada Index, Lin.Algebra Appl. 427, (2007), 70-76.
  • [6] H. Deng, S. Radenkovic, I. Gutman, The Estrada Index, in: D. Cvetkovic, I.Gutman (Eds.), Applications of Graph Spectra, Math. Inst., Belgrade, (2009),123-140.
  • [7] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On theharmonic index and the chromatic number of a graph, preprint.
  • [8] H. Deng, Z. Tang, J. Zhang, On the harmonic index and the radius of a graph,preprint.
  • [9] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On har-monic indices of trees, unicyclic graphs and bicyclic graphs, preprint.
  • [10] H. Deng, S. Balachandran, S. K.Ayyaswamy, Y. B.Venkatakrishnan, On theharmonic index and the chromatic number of a graph,Discrete Appl. Math,161(2013), 2740-2744
  • [11] B. Deng, Sh. Wang, I. Gutman, Resolvent Estrada index of Cycles and Paths,APPL. MATH. INFORM. AND MECH, (2016) 1 , 1-10.
  • [12] S. S. Dragomir, On some inequalities (Romanian), Caiete Metodico Stiinti c,Faculty of Mathematics, Timisoara University, Romania. 13 1984.
  • [13] Z. Du, B. Zhou, On sum-connectivity index of bicyclic graphs, Bull. Malays.Math. Sci. Soc. (in press).
  • [14] Z. Du, B. Zhou, N. Trinajstic, Minimum general sum-connectivity index ofunicyclic graphs, J. Math. Chem. 48 (2010), 697-703.
  • [15] Z. Du, B. Zhou, N. Trinajstic, Minimum sum-connectivity indices of trees andunicyclic graphs of a given matching number, J. Math. Chem. 47 (2010), 842-855.
  • [16] E. Estrada, J. A. Rodriguez-Velazguez, Subgraph Centrality in Complex Net-works, Phys. Rev. E. 71, (2005), 056103-056103-9.
  • [17] A. Gungor, A. Sinan Cevik, On the Harary energy and Harary Estrada indexof a graph, MATCH Commun. Math. Comput. Chem, 64 (2010), 280-296.
  • [18] O. Favaron, M. Mahio, J. F. Sacle, Some eigenvalue properties in graphs (Con-jectures of Grati-II), Discrete Math. 111 (1993), 197-220.
  • [19] I. Gutman, M. Milun, N. Trinajstic, Comment on the paper: Properties of thelatent roots of a matrix. Estimation of -electron energies by B. J. McClelland,J. Chem. Phys. 59 (1973), 2772-2774.
  • [20] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry,Springer, Berlin, 1986.
  • [21] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A.Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics andApplications, Springer-Verlag, Berlin, (2001), 196-211.
  • [22] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, NewYork, 1985.
  • [23] S. M. Hosamani, B. B. Kulkarni, R. G. Boli, V. M. Gadag, QSPR analysis ofcertain graph theoretical matrices and their corresponding energy, Appl. Math.Nonlin. Sci 2 (2017), 131-150.
  • [24] A. Jahanbani, Upper bounds for the energy of graphs, MATCH Commun.Math. Comput. Chem. 79 pp. 275-286.
  • [25] A. Jahanbani, Lower bounds for the energy of graphs, AKCE InternationalJournal of Graphs and Combinatorics. 15 (2018) 88-96.
  • [26] A. Jahanbani, Some new lower bounds for energy of graphs, Applied Mathe-matics and Computation, 296 ( 2017), 233-238.
  • [27] X. Li, Y. Shi, I. Gutman, Graph Energy,Springer, New York, 2012.
  • [28] A. Lupas, Inequalities for the roots of a class of polynomials, Publ. Elektrotehn.Fak. Ser. Math. Fiz. 594 (1977) 79-85.
  • [29] N. Rad, A. Jahanbani, I. Gutman, Zagreb Energy and Zagreb Estrada indexof Graphs, MATCH Commun. Math. Comput. Chem, 79 (2018), 371-386.
  • [30] B. Zhou, Z. Du, Some lower bounds for estrada index, Iranian Journal ofMathematical Chemistry. 1, (2010), 67- 72.
  • [31] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012), 561-566.
  • [32] B. Zhou, N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46(2009), 1252-1270.
  • [33] B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47(2010), 210-218.
There are 33 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Akbar Jahanbani

Hassan Hekmatyan Raz This is me

Publication Date January 2, 2019
Acceptance Date July 6, 2018
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Jahanbani, A., & Hekmatyan Raz, H. (2019). On the Harmonic Energy and Estrada index of Graphs. MATI, 1(1), 1-20.
AMA Jahanbani A, Hekmatyan Raz H. On the Harmonic Energy and Estrada index of Graphs. Mati. January 2019;1(1):1-20.
Chicago Jahanbani, Akbar, and Hassan Hekmatyan Raz. “On the Harmonic Energy and Estrada Index of Graphs”. MATI 1, no. 1 (January 2019): 1-20.
EndNote Jahanbani A, Hekmatyan Raz H (January 1, 2019) On the Harmonic Energy and Estrada index of Graphs. MATI 1 1 1–20.
IEEE A. Jahanbani and H. Hekmatyan Raz, “On the Harmonic Energy and Estrada index of Graphs”, Mati, vol. 1, no. 1, pp. 1–20, 2019.
ISNAD Jahanbani, Akbar - Hekmatyan Raz, Hassan. “On the Harmonic Energy and Estrada Index of Graphs”. MATI 1/1 (January 2019), 1-20.
JAMA Jahanbani A, Hekmatyan Raz H. On the Harmonic Energy and Estrada index of Graphs. Mati. 2019;1:1–20.
MLA Jahanbani, Akbar and Hassan Hekmatyan Raz. “On the Harmonic Energy and Estrada Index of Graphs”. MATI, vol. 1, no. 1, 2019, pp. 1-20.
Vancouver Jahanbani A, Hekmatyan Raz H. On the Harmonic Energy and Estrada index of Graphs. Mati. 2019;1(1):1-20.