Research Article
BibTex RIS Cite

Katmanlı İmalatla Üretilen Ti6Al4V Parçalarının Mekanik Özellikleri

Year 2017, Volume: 15 Issue: 1, 27 - 37, 01.05.2017

Abstract

Bu çalışmada, katmanlı imalat yöntemiyle
üretilen Ti alaşım parçalarının mekanik özellikleri ve bu özellikler üzerine
etki eden faktörler detaylı bir şekilde incelenmiştir. Yanal kayma mesafesi,
tarama hızı ve katman kalınlığı gibi üretim parametrelerinin yanı sıra, üretim
yöntemi, üretim sonucu parçada oluşan artık gerilmeler ve ısıl işlem uygulanması
gibi faktörlerin de mekanik özellikler üzerindeki etkileri araştırılmıştır.
Literatür taraması sonucu elde edilen bulgulara göre, sonuç bölümünde çalışmaların
yetersiz olduğu konular listelenerek ileriki muhtemel uygulamalarından
bahsedilmiştir.

References

  • 1. Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., “Additive manufacturing of metals”, Acta Materialia, 117, 2016, 371-392.
  • 2. Baumers, M., Dickens, P., Tuck, C., Hague, R., “The cost of additive manufacturing: machine productivity, economies of scale and technology-push”, Technological Forecasting & Social Change, 102, 2016, 193-201.
  • 3. Yamanaka, K., Saito, W., Mori, M., Matsumoto, H., Chiba, A., “Preparation of weak-textured commercially pure titanium by electron beam melting”, Additive Manufacturing, 8, 2015, 105–109.
  • 4. Thomas, M., Malot, T., Aubry, P., Colin, C., Vilaro, T., Bertrand, P., “The prospects for additive manufacturing of bulk TiAl alloy”, Materials at High Temperatures, 33(4-5), 2016, 571-577.
  • 5. Melchels, F. P. W., Domingos, M. A. N., Klein, T.J., Malda, J., Bartolo, P.J., Hutmacher, D.W., “Additive manufacturing of tissues and organs”, Progress in Polymer Science, 37, 2012, 1079-1104.
  • 6. Chu, C., Graf, G., Rosen, D. W., “Design for additive manufacturing of cellular structures”, Computer-Aided Design and Applications, 5(5), 2008, 686-696.
  • 7. Gardan, J., “Additive manufacturing technologies: state of the art and trends”, International Journal of Production Research, 54(10), 2016, 3118-3132.
  • 8. Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuj, B., Martina, F., “Design for additive manufacturing: trends, opportunities, considerations, and constraints”, CIRP Annals - Manufacturing Technology, 65, 2016, 737-760.
  • 9. Wohlers, T., “Wohlers Report 2015: Global Reports”, Wohlers Associates, Belgium, 2015.
  • 10. Wang, M, Lin, X., Huang, W., “Laser additive manufacture of titanium alloys”, Materials Technology, 31(2), 2016, 90-97.
  • 11. Holmström, J., Partanen, J., Tuomi, J., Walter, M., “Rapid manufacturing in the spare parts supply chain: alternative approaches to capacity deployment”, Journal of Manufacturing Technology Management, 21(6), 2010, 687–697.
  • 12. Gu, D. D, Meiners, W., Wissenbach K., Poprawe, R., “Laser additive manufacturing of metallic components: materials, processes and mechanisms”, International Materials Reviews, 57(3), 2012, 133-164.
  • 13. Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J. V., Kruth, J. P., “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V”, Acta Materialia, 58, 2010, 3303-3312.
  • 14. Merklein, M., Junker, D., Schaub, A., Neubauer, F., “Hybrid additive manufacturing technologies, an analysis regarding potentials and applications”, Physics Procedia, 83, 2016, 549 – 559.
  • 15. Liu, R., Wang, Z., Sparks, T., Liou, F., Newkirk, J., “Aerospace applications of laser additive manufacturing”, Laser Additive Manufacturing, 2017, p. 354.
  • 16. Graf, B., Gumenyuk, A., Rethmeier, M., “Laser metal deposition as repair technology for stainless steel and titanium alloys”, Physics Procedia, 39, 2012, 376-381.
  • 17. Zekovic, S., Dwivedi, R., Kovacevic, R., “Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laser-based direct metal deposition”, International Journal of Machine Tools and Manufacture, 47, 2007, 112–123.
  • 18. Banerjee, D., Williams, J. C., “Perspectives on titanium science and technology”, Acta Materialia, 61(3), 2013, 844–879.
  • 19. Szost, B. A., Terzi, S., Martina, F., Boisselier, D., Prytuliak, A., Pirling, T., Hofmann, M., Jarvis, D. J., “A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components”, Materials and Design, 89, 2016, 559-567.
  • 20. Körner, C., “Additive manufacturing of metallic components by selective electron beam melting — a review”, International Materials Reviews, 61(5), 2016, 361-377.
  • 21. Zhu, Y., Li, J., Tian, X., Wang, H., Liu, D., “Microstructure and mechanical properties of hybrid fabricated Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy by laser additive manufacturing”, Materials Science & Engineering A, 607, 2014, 427–434.
  • 22. Carroll, B. E., Palmer, T. A., Beese, A. M., “Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing”, Acta Materialia, 87, 2015, 309-320.
  • 23. Ren, H., Tian, X., Liu, D., Liu, J., Wang, H., “Microstructural evolution and mechanical properties of laser melting deposited Ti−6.5Al−3.5Mo−1.5Zr−0.3Si titanium alloy”, Transactions of Nonferrous Metal Society of China, 25, 2015, 1856−1864.
  • 24. Song, B., Dong, S., Zhang, B., Liao, H., Coddet, C., “Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V”, Materials and Design, 35, 2012, 120-125.
  • 25. Yu, J., Rombouts, M., Maes, G., Motmans, F., “Material properties of Ti6Al4V parts produced by laser metal deposition”, Physics Procedia, 39, 2012, 416-424.
  • 26. Wang, X., Gong, X., Chou, K., “Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing”, Procedia Manufacturing, 1, 2015, 287-295.
  • 27. Kempen, K., Yasa, E., Thijs, L., Kruth, J. P., Humbeeck, J. V., “Microstructure and mechanical properties of selective laser melted 18Ni-300 steel”, Physics Procedia, 12, 2011, 255-263.
  • 28. Buchbinder, D., Schleifenbaum, H., Heidrich, S., Meiners, W., Bültmann, J., “High power selective laser melting (HP SLM) of aluminum parts”, Physics Procedia, 12, 2011, 271–278.
  • 29. Casalino, G., Campanelli, S. L., Contuzzi, N., Ludovico, A. D., “Experimental investigation and statistical optimization of the selective laser melting process of a maraging steel”, Optics & Laser Technology, 65, 2015, 151-158.
  • 30. Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X., “Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel”, Materials and Design, 50, 2013, 581–586.
  • 31. Basalah, A., Esmaeili, S., Toyserkani, E., “On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures”, Journal of Materials Processing Technology, 238, 2016, 341-351.
  • 32. Yu, J., Lin, X., Ma, L., Wang, J., Fu, X., Chen, J., “Influence of laser deposition patterns on part distortion, interior quality and mechanical properties by laser solid forming (LSF)”, Material Science and Engineering A, 528, 2011, 1094-1104.
  • 33. Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M., “An overview of direct laser deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control”, Additive Manufacturing, 8, 2015, 12–35.
  • 34. Blackwell, P.L., “The mechanical and microstructural characteristics of laser-deposited IN718”, Journal of Material Processing Technology, 170, 2015, 240–246.
  • 35. Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J., Humbeeck, J. V., “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures”, Additive Manufacturing, 5, 2015, 77–84.
  • 36. Casati, R., Lemke, J., Vedani, M., “Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting”, Journal of Materials Science & Technology, 32, 2016, 738-744.
  • 37. Wycisk, E., Emmelmann, C., Siddique, S., Walther, F., “High cycle fatigue (HCF) performance of Ti–6Al–4V alloy processed by selective laser melting”, Advanced Materials Research, 816, 2013, 134-139.
  • 38. Hrabe, N., Quinn, T., “Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location”, Material Science and Engineering A, 573, 2013, 271-277.
  • 39. Zhang, S., Wei, Q., Cheng, L., Li, S., Shi. Y., “Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting”, Materials and Design, 63, 2014, 185–193.
  • 40. Zhai, Y., Galarraga, H., Lados, D. A., “Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques”, Procedia Engineering, 114, 2015, 658-666.
  • 41. Al-Bermani, S. S., Blackmore, M. L., Zhang, W., Todd, I., “The origin of microstructural diversity, texture and mechanical properties in electron beam melted Ti–6Al–4V”, Metallurgical and Materials Transactions A, 41, 2010, 3422-3434.
  • 42. Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., Babu, S. S., “The metallurgy and processing science of metal additive manufacturing”, International Materials Reviews, 61(5), 2016, 315-360.
  • 43. Shuangyin, Z., Xin, L., Jing, C., Weidong, H., “Influence of heat treatment on residual stress of Ti-6Al-4V alloy by laser solid forming”, Rare Metal Materials and Engineering, 38, 2009, 774-778.
  • 44. Popovich, A., Sufiiarov, V. Polozov, I., Borisov, E., Masaylo, D., Orlov, A., “Microstructure and mechanical properties of additive manufactured copper alloy”, Materials Letters, 179, 2016, 38–41.
  • 45. Yasa, E., Kruth, J. P., “Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting”, Procedia Engineering, 19, 2011, 389-395.
  • 46. Rangaswamy, P., Griffith, M.L., Prime, M.B., Holden, T.M., Rogge, R.B., Edwards, J.M., “Residual stresses in LENS® components using neutron diffraction and contour method”, Material Science and Engineering A, 399, 2005, 72–83.
  • 47. Bontha, S., Klingbeil, N.W., Kobryn, P.A., Fraser, H.L., “Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures”, Journal of Materials Processing Technology, 178, 2006, 135–142.
  • 48. Ahn, Y. K., Kim, H. G., Park, H. K., Kim, G. H., Jung, K. H., Lee, C. W., Kim, W. Y., Lim, S. H., Lee, B. S., “Mechanical and microstructural characteristics of commercial purity titanium implants fabricated by electron-beam additive manufacturing”, Materials Letters, 187, 2017, 64–67.
  • 49. Attar, H., Calin, M., Zhang, L.C., Scudino, S., Eckert, J., “Manufacture by selective laser melting and mechanical behavior of commercially pure titanium”, Materials Science & Engineering A, 593, 2014, 170–177.
  • 50. Furumoto, T., Koizumi, A., Alkahari, M. R., Anayama, R., Hosokawa, A., Tanaka, R., Ueda, T., “Permeability and strength of a porous metal structure fabricated by additive manufacturing”, Journal of Materials Processing Technology, 219, 2015, 10–16.
  • 51. Kasperovich, G., Haubrich, J., Gussone, J., Requena, G., “Correlation between porosity and processing parameters in Ti6Al4V produced by selective laser melting”, Materials and Design, 105, 2016, 160-170.
  • 52. Qiu, C., Adkins, N. J. E., Attallah, M. M., “Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V”, Materials Science & Engineering A, 578, 2013, 230–239.
  • 53. Vrancken, B., Thijs, L., Kruth, J. P., Humbeeck, J. V., “Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties”, Journal of Alloys and Compounds, 541, 2012, 177–185.
  • 54. Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., Maier, H. J., “On the mechanical behaviour of titanium alloy Ti6Al4V manufactured by selective laser melting: Fatigue resistance and crack growth performance”, International Journal of Fatigue, 48, 2013, 300–307.
  • 55. Uhlmann, E., Kersting, R., Klein, T. B., Cruz, M. F., Borille, A. V., “Additive manufacturing of titanium alloy for aircraft components”, Procedia CIRP, 35, 2015, 55–60.
  • 56. Tang, H. P., Qian, M., Liu, N., Zhang, X. Z., Yang, G. Y., Wang, J., “Effect of powder reuse times on additive manufacturing of Ti–6Al–4V by selective electron beam melting”, Journal of the Minerals, Metals & Materials Society, 67(3), 2015, 1-9.
Year 2017, Volume: 15 Issue: 1, 27 - 37, 01.05.2017

Abstract

References

  • 1. Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., “Additive manufacturing of metals”, Acta Materialia, 117, 2016, 371-392.
  • 2. Baumers, M., Dickens, P., Tuck, C., Hague, R., “The cost of additive manufacturing: machine productivity, economies of scale and technology-push”, Technological Forecasting & Social Change, 102, 2016, 193-201.
  • 3. Yamanaka, K., Saito, W., Mori, M., Matsumoto, H., Chiba, A., “Preparation of weak-textured commercially pure titanium by electron beam melting”, Additive Manufacturing, 8, 2015, 105–109.
  • 4. Thomas, M., Malot, T., Aubry, P., Colin, C., Vilaro, T., Bertrand, P., “The prospects for additive manufacturing of bulk TiAl alloy”, Materials at High Temperatures, 33(4-5), 2016, 571-577.
  • 5. Melchels, F. P. W., Domingos, M. A. N., Klein, T.J., Malda, J., Bartolo, P.J., Hutmacher, D.W., “Additive manufacturing of tissues and organs”, Progress in Polymer Science, 37, 2012, 1079-1104.
  • 6. Chu, C., Graf, G., Rosen, D. W., “Design for additive manufacturing of cellular structures”, Computer-Aided Design and Applications, 5(5), 2008, 686-696.
  • 7. Gardan, J., “Additive manufacturing technologies: state of the art and trends”, International Journal of Production Research, 54(10), 2016, 3118-3132.
  • 8. Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuj, B., Martina, F., “Design for additive manufacturing: trends, opportunities, considerations, and constraints”, CIRP Annals - Manufacturing Technology, 65, 2016, 737-760.
  • 9. Wohlers, T., “Wohlers Report 2015: Global Reports”, Wohlers Associates, Belgium, 2015.
  • 10. Wang, M, Lin, X., Huang, W., “Laser additive manufacture of titanium alloys”, Materials Technology, 31(2), 2016, 90-97.
  • 11. Holmström, J., Partanen, J., Tuomi, J., Walter, M., “Rapid manufacturing in the spare parts supply chain: alternative approaches to capacity deployment”, Journal of Manufacturing Technology Management, 21(6), 2010, 687–697.
  • 12. Gu, D. D, Meiners, W., Wissenbach K., Poprawe, R., “Laser additive manufacturing of metallic components: materials, processes and mechanisms”, International Materials Reviews, 57(3), 2012, 133-164.
  • 13. Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J. V., Kruth, J. P., “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V”, Acta Materialia, 58, 2010, 3303-3312.
  • 14. Merklein, M., Junker, D., Schaub, A., Neubauer, F., “Hybrid additive manufacturing technologies, an analysis regarding potentials and applications”, Physics Procedia, 83, 2016, 549 – 559.
  • 15. Liu, R., Wang, Z., Sparks, T., Liou, F., Newkirk, J., “Aerospace applications of laser additive manufacturing”, Laser Additive Manufacturing, 2017, p. 354.
  • 16. Graf, B., Gumenyuk, A., Rethmeier, M., “Laser metal deposition as repair technology for stainless steel and titanium alloys”, Physics Procedia, 39, 2012, 376-381.
  • 17. Zekovic, S., Dwivedi, R., Kovacevic, R., “Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laser-based direct metal deposition”, International Journal of Machine Tools and Manufacture, 47, 2007, 112–123.
  • 18. Banerjee, D., Williams, J. C., “Perspectives on titanium science and technology”, Acta Materialia, 61(3), 2013, 844–879.
  • 19. Szost, B. A., Terzi, S., Martina, F., Boisselier, D., Prytuliak, A., Pirling, T., Hofmann, M., Jarvis, D. J., “A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components”, Materials and Design, 89, 2016, 559-567.
  • 20. Körner, C., “Additive manufacturing of metallic components by selective electron beam melting — a review”, International Materials Reviews, 61(5), 2016, 361-377.
  • 21. Zhu, Y., Li, J., Tian, X., Wang, H., Liu, D., “Microstructure and mechanical properties of hybrid fabricated Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy by laser additive manufacturing”, Materials Science & Engineering A, 607, 2014, 427–434.
  • 22. Carroll, B. E., Palmer, T. A., Beese, A. M., “Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing”, Acta Materialia, 87, 2015, 309-320.
  • 23. Ren, H., Tian, X., Liu, D., Liu, J., Wang, H., “Microstructural evolution and mechanical properties of laser melting deposited Ti−6.5Al−3.5Mo−1.5Zr−0.3Si titanium alloy”, Transactions of Nonferrous Metal Society of China, 25, 2015, 1856−1864.
  • 24. Song, B., Dong, S., Zhang, B., Liao, H., Coddet, C., “Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V”, Materials and Design, 35, 2012, 120-125.
  • 25. Yu, J., Rombouts, M., Maes, G., Motmans, F., “Material properties of Ti6Al4V parts produced by laser metal deposition”, Physics Procedia, 39, 2012, 416-424.
  • 26. Wang, X., Gong, X., Chou, K., “Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing”, Procedia Manufacturing, 1, 2015, 287-295.
  • 27. Kempen, K., Yasa, E., Thijs, L., Kruth, J. P., Humbeeck, J. V., “Microstructure and mechanical properties of selective laser melted 18Ni-300 steel”, Physics Procedia, 12, 2011, 255-263.
  • 28. Buchbinder, D., Schleifenbaum, H., Heidrich, S., Meiners, W., Bültmann, J., “High power selective laser melting (HP SLM) of aluminum parts”, Physics Procedia, 12, 2011, 271–278.
  • 29. Casalino, G., Campanelli, S. L., Contuzzi, N., Ludovico, A. D., “Experimental investigation and statistical optimization of the selective laser melting process of a maraging steel”, Optics & Laser Technology, 65, 2015, 151-158.
  • 30. Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X., “Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel”, Materials and Design, 50, 2013, 581–586.
  • 31. Basalah, A., Esmaeili, S., Toyserkani, E., “On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures”, Journal of Materials Processing Technology, 238, 2016, 341-351.
  • 32. Yu, J., Lin, X., Ma, L., Wang, J., Fu, X., Chen, J., “Influence of laser deposition patterns on part distortion, interior quality and mechanical properties by laser solid forming (LSF)”, Material Science and Engineering A, 528, 2011, 1094-1104.
  • 33. Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M., “An overview of direct laser deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control”, Additive Manufacturing, 8, 2015, 12–35.
  • 34. Blackwell, P.L., “The mechanical and microstructural characteristics of laser-deposited IN718”, Journal of Material Processing Technology, 170, 2015, 240–246.
  • 35. Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J., Humbeeck, J. V., “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures”, Additive Manufacturing, 5, 2015, 77–84.
  • 36. Casati, R., Lemke, J., Vedani, M., “Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting”, Journal of Materials Science & Technology, 32, 2016, 738-744.
  • 37. Wycisk, E., Emmelmann, C., Siddique, S., Walther, F., “High cycle fatigue (HCF) performance of Ti–6Al–4V alloy processed by selective laser melting”, Advanced Materials Research, 816, 2013, 134-139.
  • 38. Hrabe, N., Quinn, T., “Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location”, Material Science and Engineering A, 573, 2013, 271-277.
  • 39. Zhang, S., Wei, Q., Cheng, L., Li, S., Shi. Y., “Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting”, Materials and Design, 63, 2014, 185–193.
  • 40. Zhai, Y., Galarraga, H., Lados, D. A., “Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques”, Procedia Engineering, 114, 2015, 658-666.
  • 41. Al-Bermani, S. S., Blackmore, M. L., Zhang, W., Todd, I., “The origin of microstructural diversity, texture and mechanical properties in electron beam melted Ti–6Al–4V”, Metallurgical and Materials Transactions A, 41, 2010, 3422-3434.
  • 42. Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., Babu, S. S., “The metallurgy and processing science of metal additive manufacturing”, International Materials Reviews, 61(5), 2016, 315-360.
  • 43. Shuangyin, Z., Xin, L., Jing, C., Weidong, H., “Influence of heat treatment on residual stress of Ti-6Al-4V alloy by laser solid forming”, Rare Metal Materials and Engineering, 38, 2009, 774-778.
  • 44. Popovich, A., Sufiiarov, V. Polozov, I., Borisov, E., Masaylo, D., Orlov, A., “Microstructure and mechanical properties of additive manufactured copper alloy”, Materials Letters, 179, 2016, 38–41.
  • 45. Yasa, E., Kruth, J. P., “Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting”, Procedia Engineering, 19, 2011, 389-395.
  • 46. Rangaswamy, P., Griffith, M.L., Prime, M.B., Holden, T.M., Rogge, R.B., Edwards, J.M., “Residual stresses in LENS® components using neutron diffraction and contour method”, Material Science and Engineering A, 399, 2005, 72–83.
  • 47. Bontha, S., Klingbeil, N.W., Kobryn, P.A., Fraser, H.L., “Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures”, Journal of Materials Processing Technology, 178, 2006, 135–142.
  • 48. Ahn, Y. K., Kim, H. G., Park, H. K., Kim, G. H., Jung, K. H., Lee, C. W., Kim, W. Y., Lim, S. H., Lee, B. S., “Mechanical and microstructural characteristics of commercial purity titanium implants fabricated by electron-beam additive manufacturing”, Materials Letters, 187, 2017, 64–67.
  • 49. Attar, H., Calin, M., Zhang, L.C., Scudino, S., Eckert, J., “Manufacture by selective laser melting and mechanical behavior of commercially pure titanium”, Materials Science & Engineering A, 593, 2014, 170–177.
  • 50. Furumoto, T., Koizumi, A., Alkahari, M. R., Anayama, R., Hosokawa, A., Tanaka, R., Ueda, T., “Permeability and strength of a porous metal structure fabricated by additive manufacturing”, Journal of Materials Processing Technology, 219, 2015, 10–16.
  • 51. Kasperovich, G., Haubrich, J., Gussone, J., Requena, G., “Correlation between porosity and processing parameters in Ti6Al4V produced by selective laser melting”, Materials and Design, 105, 2016, 160-170.
  • 52. Qiu, C., Adkins, N. J. E., Attallah, M. M., “Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V”, Materials Science & Engineering A, 578, 2013, 230–239.
  • 53. Vrancken, B., Thijs, L., Kruth, J. P., Humbeeck, J. V., “Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties”, Journal of Alloys and Compounds, 541, 2012, 177–185.
  • 54. Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., Maier, H. J., “On the mechanical behaviour of titanium alloy Ti6Al4V manufactured by selective laser melting: Fatigue resistance and crack growth performance”, International Journal of Fatigue, 48, 2013, 300–307.
  • 55. Uhlmann, E., Kersting, R., Klein, T. B., Cruz, M. F., Borille, A. V., “Additive manufacturing of titanium alloy for aircraft components”, Procedia CIRP, 35, 2015, 55–60.
  • 56. Tang, H. P., Qian, M., Liu, N., Zhang, X. Z., Yang, G. Y., Wang, J., “Effect of powder reuse times on additive manufacturing of Ti–6Al–4V by selective electron beam melting”, Journal of the Minerals, Metals & Materials Society, 67(3), 2015, 1-9.
There are 56 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma, Geliştirme ve Uygulama Makaleleri
Authors

Orhan Gülcan

Erhan İlhan Konukseven

Selen Temel This is me

Publication Date May 1, 2017
Submission Date March 7, 2017
Published in Issue Year 2017 Volume: 15 Issue: 1

Cite

Vancouver Gülcan O, Konukseven Eİ, Temel S. Katmanlı İmalatla Üretilen Ti6Al4V Parçalarının Mekanik Özellikleri. MATİM. 2017;15(1):27-3.