Research Article
BibTex RIS Cite

Havada Görevlendirilebilen Tekerleksiz Araç Tasarımı – Kişisel Hava Aracı

Year 2022, Volume: 20 Issue: 1, 36 - 48, 19.05.2022

Abstract

Bu çalışmada, asgari 100kg yük taşıma kapasitesi olan, hafif ve fonksiyonel bir araç tasarımı yapılmıştır. Bu araç, sahip olduğu sekiz pervane sayesinde havada görev görebilirken aynı zamanda yere ve suya dikey iniş de gerçekleştirebilme özelliğine sahiptir. Bu tasarım, kurtarma ekiplerinin ulaşımı, kargo taşımacılığı ve kısa mesafeler içinde, insanların özel ulaşım ihtiyaçlarını karşılayabilmeleri amacı ile tasarlanmıştır. Her pervane motoru tek başına 94kg taşıyabilmekle beraber, aracın toplam taşıyabileceği yük kendi ağırlığıyla birlikte 752kg olmuştur. Proje sürecinde, ön tasarım ve detaylı tasarım süreçleri yürütülmüştür. Tasarımlar, sonlu elemanlar analizleri ve hesaplamalı akışkanlar dinamiği simülasyonlarının sonuçları göz önünde tutularak yapılmıştır. Pervanelerin testi için deneysel iki düzenek tasarlanmıştır. İlk düzenek mekanik bir düzenek olmakla beraber iki taraftan oluşmaktadır. İlk tarafta bir yük hücresi kullanılarak pervanenin itiş gücünün ölçülmesi hedeflenmiştir. İkinci tarafta ise pervanenin dakikada kaç tur attığını ölçmek için bir fotodedektör veya Hall etkisi sensörü kullanılmıştır. İkinci düzenekte bir elektronik hız kontrolcüsü, motoru kontrol etmek için kullanılmıştır. Son olarak, kullanılan yük hücresinin ölçümlemesi için deneysel düzenekler tasarlanmıştır.

References

  • Arthur Holland Michel (2017). Amazon’s drone patents, Center for the Study of the Drone at Bard College.
  • Kim, S. H., Lee, D. K., Cheon, J. H., Kim, S. J., & Yu, K. H. (2016). Design and flight tests of a drone for delivery service. Journal of Institute of Control, Robotics and Systems, 22(3), 204-209.
  • Lee et al. (2006). Hovercraft. United States Patent No. US 7,032,698 B2.
  • Okafor, B. E. (2013). Development of a Hovercraft Prototype. International Journal of Engineering and Technology, 3(3), 276-281.
  • H. H. Semmes (1932). Seaplane. United States Patent Office Serial No. 465,402.
  • Von Karman, T. (1929). The impact on seaplane floats during landing.
  • Fairhead (2007). Tracked vehicle. United States Patent No. US 7,575,075 B2.
  • Jung, J. W., Kim, K. P., Ji, H. C., & Moon, T. S. (2015). Design improvement of the driving bevel gear in transmissions of a tracked vehicle. Journal of the Korean Society of Manufacturing Process Engineers, 14(2), 1-6.
  • Miller et al. (2013). Magnetic levitation train United States Patent No. US 8,430,037 B2.
  • Kim, M., Jeong, J. H., Lim, J., Kim, C. H., & Won, M. (2017). Design and control of levitation and guidance systems for a semi-high-speed maglev train. Journal of Electrical Engineering and Technology, 12(1), 117-125.
  • S. Talebinejad (2018). Maneuvering mobile robots United States Patent No. US 10,800,049.
  • Jeong, D. H., Park, J. I., & Kim, Y. T. (2013). Study on design of mobile robot for autonomous freight transportation. Journal of Korean Institute of Intelligent Systems, 23(3), 202-207.
  • EHang. (2020). The future of transportation: White paper on urban air mobility systems [White paper].
  • Volocopter. (2021). The roadmap to scalable urban air mobility, 16 [White paper].
  • P. Nathen (2021). Architectural performance assessment of an electric vertical take-off and landing (e-VTOL) aircraft based on a ducted vectored thrust concept.
  • Ramesh, M., Vijayanandh, R., Jagadeeshwaran, P., Deviparameswari, K., Meenakshi, S., Asher, P. K., ... & Antonitta, B. F. (2021). Impact behavioral studies on various composite materials using Fluid-Structure interaction (FSI). Materials Today: Proceedings, 5.

The Design of a Vehicle Without Wheels to be Operated on Air - Personal Air Vehicle

Year 2022, Volume: 20 Issue: 1, 36 - 48, 19.05.2022

Abstract

In this article, the design of a lightweight and functional vehicle with a minimum payload carrying capacity of 100kg is discussed. While this vehicle can operate in the air thanks to its eight propellers, it also has the ability to land on the ground and on the water. This design is made for the transportation of rescue teams, cargo transportation and to meet the special transportation needs of people within short distances. While each propeller can carry 94kg alone, the total load that the vehicle can carry is 752kg with its own weight. During the project process, preliminary design and detailed design processes were carried out. Design improvements have been made considering the results of finite element analysis and computational fluid dynamics simulations. Two experimental setups were designed to test the propellers. The first setup is a mechanical one, it consists of two sides. On the first side, it is aimed to measure the thrust force of the propeller by using a load cell. On the second side, a photodetector or Hall Effect sensor is used to measure how many revolutions per minute the propeller makes. In the second setup, an electronic speed controller is used to control the motor. Finally, experimental setups were designed for the calibration of the load cell that has been used, in both tension and compression loads.

References

  • Arthur Holland Michel (2017). Amazon’s drone patents, Center for the Study of the Drone at Bard College.
  • Kim, S. H., Lee, D. K., Cheon, J. H., Kim, S. J., & Yu, K. H. (2016). Design and flight tests of a drone for delivery service. Journal of Institute of Control, Robotics and Systems, 22(3), 204-209.
  • Lee et al. (2006). Hovercraft. United States Patent No. US 7,032,698 B2.
  • Okafor, B. E. (2013). Development of a Hovercraft Prototype. International Journal of Engineering and Technology, 3(3), 276-281.
  • H. H. Semmes (1932). Seaplane. United States Patent Office Serial No. 465,402.
  • Von Karman, T. (1929). The impact on seaplane floats during landing.
  • Fairhead (2007). Tracked vehicle. United States Patent No. US 7,575,075 B2.
  • Jung, J. W., Kim, K. P., Ji, H. C., & Moon, T. S. (2015). Design improvement of the driving bevel gear in transmissions of a tracked vehicle. Journal of the Korean Society of Manufacturing Process Engineers, 14(2), 1-6.
  • Miller et al. (2013). Magnetic levitation train United States Patent No. US 8,430,037 B2.
  • Kim, M., Jeong, J. H., Lim, J., Kim, C. H., & Won, M. (2017). Design and control of levitation and guidance systems for a semi-high-speed maglev train. Journal of Electrical Engineering and Technology, 12(1), 117-125.
  • S. Talebinejad (2018). Maneuvering mobile robots United States Patent No. US 10,800,049.
  • Jeong, D. H., Park, J. I., & Kim, Y. T. (2013). Study on design of mobile robot for autonomous freight transportation. Journal of Korean Institute of Intelligent Systems, 23(3), 202-207.
  • EHang. (2020). The future of transportation: White paper on urban air mobility systems [White paper].
  • Volocopter. (2021). The roadmap to scalable urban air mobility, 16 [White paper].
  • P. Nathen (2021). Architectural performance assessment of an electric vertical take-off and landing (e-VTOL) aircraft based on a ducted vectored thrust concept.
  • Ramesh, M., Vijayanandh, R., Jagadeeshwaran, P., Deviparameswari, K., Meenakshi, S., Asher, P. K., ... & Antonitta, B. F. (2021). Impact behavioral studies on various composite materials using Fluid-Structure interaction (FSI). Materials Today: Proceedings, 5.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Araştırma, Geliştirme ve Uygulama Makaleleri
Authors

Korcan Küçüköztaş 0000-0003-2578-0691

Furkan Taşcı 0000-0001-6590-9328

Hüseyin Varlı 0000-0002-5209-0015

Eren Gök 0000-0001-7733-9289

Bilgin Kaftanoğlu 0000-0002-2216-7405

Şakir Baytaroğlu 0000-0002-2526-2627

Publication Date May 19, 2022
Submission Date August 16, 2021
Published in Issue Year 2022 Volume: 20 Issue: 1

Cite

Vancouver Küçüköztaş K, Taşcı F, Varlı H, Gök E, Kaftanoğlu B, Baytaroğlu Ş. Havada Görevlendirilebilen Tekerleksiz Araç Tasarımı – Kişisel Hava Aracı. MATİM. 2022;20(1):36-48.