Research Article
BibTex RIS Cite

Dikkat Eksikliği Hiperaktivite Bozukluğu Olan Çocuklarda Nörotransmitter Metabolizmasıyla İlişkili Gen Ekspresyonları

Year 2025, Volume: 26 Issue: 1, 19 - 32, 20.03.2025
https://doi.org/10.69601/meandrosmdj.1599737

Abstract

Dikkat Eksikliği Hiperaktivite Bozukluğu Olan Çocuklarda Nörotransmitter Metabolizmasıyla İlişkili Gen Ekspresyonları
Amaç: Dikkat eksikliği hiperaktivite bozukluğu (DEHB) ile ilişkili genlerin (SLC6A3, SLC6A4, SLC1A2, SLC18A2, MAOA, COMT, GLYAT, GRM5, DRD4, TPH1 ve ADRA2C) ekspresyon düzeylerini metilfenidat ile tedavi öncesi ve sonrası olarak araştırmak ve hastalıkların etiyopatogenezinde biyobelirteç olarak hizmet edip edemeyeceklerini görmek.
Materyaller ve Metot: Otuz beş DEHB tanısı almış çocuk ve 38 sağlıklı kontrol çalışmaya dahil edildi. Kontrol, tedavi öncesi ve tedavi sonrası grup olmak üzere üç gruba ayrıldı. Katılımcıların periferik kan örneklerinden mRNA izole edildikten sonra, reverse transkripsiyon yöntemi ile mRNA'dan elde edilen cDNA kullanılarak qPCR gerçekleştirildi.
Bulgular: DEHB'li çocuklarda SLC6A3'ün yükseldiği ve SLC6A4, SLC1A2, SLC18A2, ADRA2C, MAOA, COMT, GLYAT, DRD4 ve TPH1 genlerinin ifade düzeylerinin azaldığı tespit edildi (p<0,01). Tedavi sonrası grupta SLC6A3 ve COMT ifade düzeyleri azalırken, SLC6A4, SLC1A2, SLC18A2, ADRA2C, MAOA, GLYAT, GRM5 ve TPH1 ifade düzeyleri anlamlı şekilde arttı (p<0,01). Kontrol, tedavi öncesi ve tedavi sonrası grupların gen ifade düzeyleri arasındaki vurgulanan ilişkiler tespit edildi. Ek olarak, SLC6A3, SLC6A4, SLC1A2, SLC18A2, ADRA2C, MAOA, COMT, GLYAT, DRD ve TPH1 için tanısal güce sahip cut-off değerleri tespit edildi.
Sonuç: Bu genlerin ifade düzeyleri hastalığın oluşumu, prognozu ve etiyopatogenezinde önemli bir rol oynayabilir ve bu değişiklikler hastalığın ayırıcı tanısında ve tedavi stratejilerinin geliştirilmesinde biyobelirteç olarak da kullanılabilir.

Project Number

TSD-12-4112

References

  • 1. Sonuga-Barke EJS, Becker SP, Bölte S, Castellanos FX, Franke B, Newcorn JH et al (2023) Annual Research Review: Perspectives on progress in ADHD science from characterization to cause. J Child Psychol Psychiatry 64(4):506-532. doi: 10.1111/jcpp.13696.
  • 2. Cortese S, Song M, Farhat LC, Yon DK, Lee SW, Kim MS, Park S et al (2023) Incidence, prevalence, and global burden of ADHD from 1990 to 2019 across 204 countries: data, with critical re-analysis, from the Global Burden of Disease study. Mol Psychiatry 28(11):4823-4830. doi: 10.1038/s41380-023-02228-3.
  • 3. Çetin FH, Isıl Y (2018) Attention Deficit Hyperactivity Disorder and Genetics. Current Approaches in Psychiatry 10(1):19-39. doi: 10.18863/pgy.334547.
  • 4. Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T et al (2001) Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 58(3):289-95. doi: 10.1001/archpsyc.58.3.289.
  • 5. Arnsten AF(2009) The Emerging Neurobiology of Attention Deficit Hyperactivity Disorder: The Key Role of the Prefrontal Association Cortex. J Pediatr 1;154(5):I-S43. doi: 10.1016/j.jpeds.2009.01.018.
  • 6. Biederman J, Ball SW, Monuteaux MC, Mick E, Spencer TJ, Mccreary M et al (2008) New insights into the comorbidity between ADHD and major depression in adolescent and young adult females. J Am Acad Child Adolesc Psychiatr 47(4):426-434. doi: 10.1097/CHI.0b013e31816429d3.
  • 7. Türay S, Eröz R, Başak, AN (2021) A novel pathogenic variant in the 3’ end of the AGTPBP1 gene gives rise to neurodegeneration without cerebellar atrophy: an expansion of the disease phenotype? Neurogenetics 22(2):127–132. doi: 10.1007/s10048-021-00643-8.
  • 8. Yazıcı M, Yektaş Ç, Eröz R, Kaplan Karakaya ES, Sarıgedik E (2023) Investigation of the forkhead box protein P2 gene by the next-generation sequence analysis method in children diagnosed with specific learning disorder. Psychiatr Genet 33(1):8-19. doi: 10.1097/YPG.0000000000000326.
  • 9. Cakmak Genc G, Yilmaz B, Karakas Celik S, Aydemir C, Eroz R, Dursun A (2024) Radiosensitivity in a newborn with microcephalia: A case report of Nijmegen breakage syndrome. Birth Defects Res 116(5):e2346. doi: 10.1002/bdr2.2346.
  • 10. Dogan M, Teralı K, Eroz R, Kılıç H, Gezdirici A, Gönüllü B (2024) Discovery of a novel homozygous SOD1 truncating variant bolsters infantile SOD1 deficiency syndrome. Mol Biol Rep 26;51(1):580. doi: 10.1007/s11033-024-09513-6.
  • 11. Yildiz Gulhan P, Eroz R, Ataoglu O, İnce N, Davran F, Öztürk CE et al (2022) The evaluation of both the expression and serum protein levels of Caspase-3 gene in patients with different degrees of SARS-CoV2 infection. J Med Virol 94(3):897–905. doi: 10.1002/jmv.27362.
  • 12. Tasdemir S, Eroz R, Dogan H, Erdem HB, Sahin I, Kara M et al (2016) Association between human hair loss and the expression levels of nucleolin, nucleophosmin, and UBTF genes. Genet Test Mol Biomark 20(4):197–202. doi: 10.1089/gtmb.2015.0246.
  • 13. Tuşat M, Eroz R, Bölükbaş F, Özkan E, Erdal H (2024) Evaluation of the protective and therapeutic effects of extra virgin olive oil rich in phenol in experimental model of neonatal necrotizing enterocolitis by clinical disease score, ınflammation, apoptosis, and oxidative stress markers. Pediatr Surg Int 17;40(1):80. doi: 10.1007/s00383-024-05669-1. PMID: 38493431.
  • 14. Damar İH, Eroz R (2022) Argyrophilic nucleolar organizer regions as new biomarkers in ST-Elevation myocardial infarction. J Cardiovasc Dev Dis 9(2):58. doi: 10.3390/jcdd9020058.
  • 15. Kaya M, Eroz R, Kabakliogli M (2022) Expression of nucleolin, nucleophosmin, upstream binding transcription factor genes and propolis in wound models. J Wound Care 31(Sup10):S28–S40. doi: 10.1296/jowc.
  • 16. Yesildag K, Kokulu K, Mutlu H, Eroz R, Taha-Sert E, Saritas A (2021) Argyrophilic nucleolar organizer regions as a promising biomarker for the detection of brain hypoxia levels caused by different doses of carbon monoxide poisoning. Gac Med Mex 157(6):610–617. doi: 10.2487/GMM.M21000625.
  • 17. Bonvicini C, Faraone SV, Scassellati C (2016) Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol Psychiatry ;21(7):872-84. doi: 10.1038/mp.2016.74.
  • 18. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126(1):51-90. doi: 10.1007/s00439-009-0694-x.
  • 19. Taurines R, Grünblatt E, Schecklmann M, Schwenck C, Albantakis L et al (2011) Altered mRNA expression of monoaminergic candidate genes in the blood of children with attention deficit hyperactivity disorder and autism spectrum disorder. World J Biol Psychiatry 1:104-8. doi: 10.3109/15622975.2011.600297.
  • 20. McCaffrey TA, Laurent G, Shtokalo D, Antonets D, Vyatkin Y, Jones D et al (2020) Biomarker discovery in attention deficit hyperactivity disorder: RNA sequencing of whole blood in discordant twin and case-controlled cohorts. BMC Med Genomics 28;13(1):160. doi: 10.1186/s12920-020-00808-8.
  • 21. Cabana-Domínguez J, Soler Artigas M, Arribas L, Alemany S, Vilar-Ribó L, Llonga N et al (2022) Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD). Transl Psychiatry 24;12(1):409. doi: 10.1038/s41398-022-02182-8.
  • 22. Mortimer N, Sánchez-Mora C, Rovira P, Vilar-Ribó L, Richarte V (2020) Transcriptome profiling in adult attention-deficit hyperactivity disorder. Eur Neuropsychopharmacol 41:160-166. doi: 10.1016/j.euroneuro.2020.11.005.
  • 23. Pagerols M, Richarte V, Sánchez-Mora C, Rovira P, Soler Artigas M, Garcia-Martínez I et al (2018) Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Sci Rep 30;8(1):1881. doi: 10.1038/s41598-018-20194-7.
  • 24. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15(3):532-4, 536-7.
  • 25. Cibrian FL, Lakes KD, Schuck SEB, Hayes GR (2022) The potential for emerging technologies to support self-regulation in children with ADHD: A literature review. International Journal of Child-Computer Interaction 31:100421. https://doi.org/10.1016/J.IJCCI.2021.100421
  • 26. Volkow ND, Wang GJ, Fowler JS, Ding YS (2005) Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry 1;57(11):1410-5. doi: 10.1016/j.biopsych.2004.11.006.
  • 27. Coghill DR, Banaschewski T, Lecendreux M, Soutullo C, Zuddas A, Adeyi B et al (2014) Post hoc analyses of the impact of previous medication on the efficacy of lisdexamfetamine dimesylate in the treatment of attention-deficit/hyperactivity disorder in a randomized, controlled trial. Neuropsychiatr Dis Treat 29;10:2039-47. doi: 10.2147/NDT.S68273.
  • 28. Grünblatt E, Geissler J, Jacob CP, Renner T, Müller M, Bartl J et al (2012) Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood. Atten Defic Hyperact Disord 4(2):77-84. doi: 10.1007/s12402-012-0074-6.
  • 29. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597-610. doi: 10.1038/nrg1655.
  • 30. Chan JC, Alenina N, Cunningham AM, Ramakrishnan A, Shen L, Bader M et al (2024) Serotonin transporter-dependent histone serotonylation in placenta contributes to the neurodevelopmental transcriptome. J Mol Biol 22:168454. doi: 10.1016/j.jmb.2024.168454.
  • 31. Sener EF, Korkmaz K, Öztop DB, Zararsız G, Özkul Y (2015) Investigation of SLC6A4 gene expression in autism spectrum disorders. J Clin Exp Invest 6(2):165-9. https://doi.org/10.5799/ahinjs.01.2015.02.0510
  • 32. Philibert RA, Sandhu H, Hollenbeck N, Gunter T, Adams W, Madan A (2008) The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am J Med Genet B Neuropsychiatr Genet 5;147B(5):543-9. doi: 10.1002/ajmg.b.30657.
  • 33. Buccoliero AM, Caporalini C, Moscardi S, Cetica V, Mei D, Conti V (2024) Leat-associated seizures the possible role of EAAT2, pyruvate carboxylase and glutamine synthetase. Epilepsy Res 199:107258. doi: 10.1016/j.eplepsyres.2023.107258.
  • 34. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP et al (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 25;102(43):15653-8. doi: 10.1073/pnas.0507901102.
  • 35. Malki K, Lourdusamy A, Binder E, Payá-Cano J, Sluyter F, Craig I et al (2012) Antidepressant-dependent mRNA changes in mouse associated with hippocampal neurogenesis in a mouse model of depression. Pharmacogenet Genomics ;22(11):765-76. doi: 10.1097/FPC.0b013e328356fa90.
  • 36. Fiorentino A, Sharp SI, McQuillin A (2015) Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur J Hum Gene 23(9):1200-6. doi: 10.1038/ejhg.2014.261.
  • 37. Huang J, Li B, Wei H, Li C, Liu C, Mi H et al (2024) Integrative analysis of gene expression profiles of substantia nigra identifies potential diagnosis biomarkers in Parkinson's disease. Sci Rep 25;14(1):2167. doi: 10.1038/s41598-024-52276-0.
  • 38. Ben-Dor DH, Zimmerman S, Sever J, Roz N, Apter A, Rehavi M et al (2007) Reduced platelet vesicular monoamine transporter density in Tourette's syndrome pediatric male patients. Eur Neuropsychopharmacol 17(8):523-6. doi: 10.1016/j.euroneuro.2007.01.002.
  • 39. Fehr C, Sommerlad D, Sander T, Anghelescu I, Dahmen N, Szegedi A et al (2013) Association of VMAT2 gene polymorphisms with alcohol dependence. J Neural Transm (Vienna) 120(8):1161-9. doi: 10.1007/s00702-013-0996-y. Epub 2013 Mar 17.
  • 40. Toren P, Rehavi M, Luski A, Roz N, Laor N, Lask M et al (2005) Decreased platelet vesicular monoamine transporter density in children and adolescents with attention deficit/hyperactivity disorder. Eur Neuropsychopharmacol 15(2):159-62. doi: 10.1016/j.euroneuro.
  • 41. Alter SP, Stout KA, Lohr KM, Taylor TN, Shepherd KR, Wang M et al (2016) Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration. Exp Neurol 275 Pt 1(Pt 1):17-24. doi: 10.1016/j.expneurol.2015.09.016
  • 42. Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL et al (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 25;27(30):8138-48. doi: 10.1523/JNEUROSCI.0319-07.2007.
  • 43. Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC et al (2008) Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem 106(5):2205-17. doi: 10.1111/j.1471-4159.2008.05568.x.
  • 44. Taylor TN, Alter SP, Wang M, Goldstein DS, Miller GW (2014) Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus. Neuropharmacology. 76 Pt A(0 0):97-105. doi: 10.1016/j.neuropharm.2013.08.033.
  • 45. Lohr KM, Chen M, Hoffman CA, McDaniel MJ, Stout KA, Dunn AR et al (2016) Vesicular Monoamine Transporter 2 (VMAT2) Level Regulates MPTP Vulnerability and Clearance of Excess Dopamine in Mouse Striatal Terminals. Toxicol Sci 153(1):79-88. doi: 10.1093/toxsci/kfw106.
  • 46. Brede M, Nagy G, Philipp M, Sorensen JB, Lohse MJ, Hein L (2003) Differential control of adrenal and sympathetic catecholamine release by alpha 2-adrenoceptor subtypes. Mol Endocrinol 17(8):1640-6. doi: 10.1210/me.2003-0035.
  • 47. Cho SC, Kim JW, Kim BN, Hwang JW, Shin MS, Park M et al (2008) Association between the alpha-2C-adrenergic receptor gene and attention deficit hyperactivity disorder in a Korean sample. Neurosci Lett 3;446(2-3):108-11. doi: 10.1016/j.neulet.2008.09.058.
  • 48. Barr CL, Wigg K, Zai G, Roberts W, Malone M, Schachar R et al (2001) Attention-deficit hyperactivity disorder and the adrenergic receptors alpha 1C and alpha 2C. Mol Psychiatry 6(3):334-7. doi: 10.1038/sj.mp.4000863.
  • 49. Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS (2023) The brain serotonin system in autism. Rev Neurosci 10;35(1):1-20. doi: 10.1515/revneuro-2023-0055..
  • 50. Liu L, Guan LL, Chen Y, Ji N, Li HM, Li ZH et al (2011) Association analyses of MAOA in Chinese Han subjects with attention-deficit/hyperactivity disorder: family-based association test, case-control study, and quantitative traits of impulsivity. Am J Med Genet B Neuropsychiatr Genet 156B(6):737-48. doi: 10.1002/ajmg.b.31217.
  • 51. Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J et al (2009) MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry 1;65(5):417-24. doi: 10.1016/j.biopsych.2008.09.013.
  • 52. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM et al (2003) Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116(1):127-37. doi: 10.1016/s0306-4522(02)00556-0.
  • 53. Sengupta S, Grizenko N, Schmitz N, Schwartz G, Bellingham J, Polotskaia A et al (2008) COMT Val108/158Met polymorphism and the modulation of task-oriented behavior in children with ADHD. Neuropsychopharmacology 33(13):3069-77. doi: 10.1038/npp.2008.85.
  • 54. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75(5):807-21. doi: 10.1086/425589.
  • 55. Dirlikov B, Shiels Rosch K, Crocetti D, Denckla MB, Mahone EM, Mostofsky SH (2014) Distinct frontal lobe morphology in girls and boys with ADHD. Neuroimage Clin 10;7:222-9. doi: 10.1016/j.nicl.2014.12.010.
  • 56. Sluis R Van Der, Sc M (2015) Investigation and characterisation of the genetic variation in the coding region of the glycine N-acyltransferase gene. North-West University (Potchefstroom Campus) May 2015.
  • 57. Mukherjee S, Manahan-Vaughan D (2013) Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology. 66:65-81. doi: 10.1016/j.neuropharm.2012.06.005.
  • 58. Xu J, Zhu Y, Contractor A, Heinemann SF (2009) mGluR5 has a critical role in inhibitory learning. J Neurosci 25;29(12):3676-84. doi: 10.1523/JNEUROSCI.5716-08.2009.
  • 59. Akutagava-Martins GC, Salatino-Oliveira A, Genro JP, Contini V, Polanczyk G, Zeni C et al (2014) Glutamatergic copy number variants and their role in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 165B(6):502-9. doi: 10.1002/ajmg.b.32253.
  • 60. Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B (2017) Variation in Gene Expression in Autism Spectrum Disorders: An Extensive Review of Transcriptomic Studies. Front Neurosci 5;10:601. doi: 10.3389/fnins.2016.00601.
  • 61. Mostafavi-Abdolmaleky H, Glatt SJ, Tusuang MT (2011) Epigenetics in Psychiatry. In: Epigenetic Aspects of Chronic Diseases. 2011; pp 163–174.

Gene Expressions Associated with Neurotransmitter Metabolism in Children with Attention Deficit Hyperactivity Disorder

Year 2025, Volume: 26 Issue: 1, 19 - 32, 20.03.2025
https://doi.org/10.69601/meandrosmdj.1599737

Abstract

Objective: To investigate the expression levels of genes (SLC6A3, SLC6A4, SLC1A2, SLC18A2, MAOA, COMT, GLYAT, GRM5, DRD4, TPH1, and ADRA2C) associated with attention deficit hyperactivity disorder (ADHD) by pre and post-treatment with methylphenidate to see if they may serve as biomarkers in the etiopathogenesis of diseases.
Materials and Methods : Thirty-five ADHD-diagnosed children and 38 healthy controls were included and divided three groups as control, pre-treatment and post-treatment group. After the isolation of mRNA from peripheral blood samples of participants, qPCR was performed using cDNA obtained from mRNA via reverse transcription method.
Result: Elevated SLC6A3 and decreased SLC6A4, SLC1A2, SLC18A2, ADRA2C, MAOA, COMT, GLYAT, DRD4 and TPH1 genes' expression levels of childiren with ADHD were detected (p<0.01). In post-treatment group, while SLC6A3 and COMT expression levels decreased, the expression levels of SLC6A4, SLC1A2, SLC18A2, ADRA2C, MAOA, GLYAT, GRM5 and TPH1 significantly increased (p<0.01). Highlighted relationships among gene expressions levels of control, pre-treatment, and post-treatment groups were detected. Additionally, cut-off values with diagnostic power for SLC6A3, SLC6A4, SLC1A2, SLC18A2, ADRA2C, MAOA, COMT, GLYAT, DRD, and TPH1 were detected.
Conclusion: The expression levels of these genes may play an important role in the formation, prognosis and etiopathogenesis of the disease, and these changes can also be used as biomarkers in the differential diagnosis and development of treatment strategies for the disease.

Ethical Statement

The authors have no financial or competing interests in relation to this work.

Supporting Institution

The study was supported by Erciyes University project TSD-12-4112

Project Number

TSD-12-4112

References

  • 1. Sonuga-Barke EJS, Becker SP, Bölte S, Castellanos FX, Franke B, Newcorn JH et al (2023) Annual Research Review: Perspectives on progress in ADHD science from characterization to cause. J Child Psychol Psychiatry 64(4):506-532. doi: 10.1111/jcpp.13696.
  • 2. Cortese S, Song M, Farhat LC, Yon DK, Lee SW, Kim MS, Park S et al (2023) Incidence, prevalence, and global burden of ADHD from 1990 to 2019 across 204 countries: data, with critical re-analysis, from the Global Burden of Disease study. Mol Psychiatry 28(11):4823-4830. doi: 10.1038/s41380-023-02228-3.
  • 3. Çetin FH, Isıl Y (2018) Attention Deficit Hyperactivity Disorder and Genetics. Current Approaches in Psychiatry 10(1):19-39. doi: 10.18863/pgy.334547.
  • 4. Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T et al (2001) Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 58(3):289-95. doi: 10.1001/archpsyc.58.3.289.
  • 5. Arnsten AF(2009) The Emerging Neurobiology of Attention Deficit Hyperactivity Disorder: The Key Role of the Prefrontal Association Cortex. J Pediatr 1;154(5):I-S43. doi: 10.1016/j.jpeds.2009.01.018.
  • 6. Biederman J, Ball SW, Monuteaux MC, Mick E, Spencer TJ, Mccreary M et al (2008) New insights into the comorbidity between ADHD and major depression in adolescent and young adult females. J Am Acad Child Adolesc Psychiatr 47(4):426-434. doi: 10.1097/CHI.0b013e31816429d3.
  • 7. Türay S, Eröz R, Başak, AN (2021) A novel pathogenic variant in the 3’ end of the AGTPBP1 gene gives rise to neurodegeneration without cerebellar atrophy: an expansion of the disease phenotype? Neurogenetics 22(2):127–132. doi: 10.1007/s10048-021-00643-8.
  • 8. Yazıcı M, Yektaş Ç, Eröz R, Kaplan Karakaya ES, Sarıgedik E (2023) Investigation of the forkhead box protein P2 gene by the next-generation sequence analysis method in children diagnosed with specific learning disorder. Psychiatr Genet 33(1):8-19. doi: 10.1097/YPG.0000000000000326.
  • 9. Cakmak Genc G, Yilmaz B, Karakas Celik S, Aydemir C, Eroz R, Dursun A (2024) Radiosensitivity in a newborn with microcephalia: A case report of Nijmegen breakage syndrome. Birth Defects Res 116(5):e2346. doi: 10.1002/bdr2.2346.
  • 10. Dogan M, Teralı K, Eroz R, Kılıç H, Gezdirici A, Gönüllü B (2024) Discovery of a novel homozygous SOD1 truncating variant bolsters infantile SOD1 deficiency syndrome. Mol Biol Rep 26;51(1):580. doi: 10.1007/s11033-024-09513-6.
  • 11. Yildiz Gulhan P, Eroz R, Ataoglu O, İnce N, Davran F, Öztürk CE et al (2022) The evaluation of both the expression and serum protein levels of Caspase-3 gene in patients with different degrees of SARS-CoV2 infection. J Med Virol 94(3):897–905. doi: 10.1002/jmv.27362.
  • 12. Tasdemir S, Eroz R, Dogan H, Erdem HB, Sahin I, Kara M et al (2016) Association between human hair loss and the expression levels of nucleolin, nucleophosmin, and UBTF genes. Genet Test Mol Biomark 20(4):197–202. doi: 10.1089/gtmb.2015.0246.
  • 13. Tuşat M, Eroz R, Bölükbaş F, Özkan E, Erdal H (2024) Evaluation of the protective and therapeutic effects of extra virgin olive oil rich in phenol in experimental model of neonatal necrotizing enterocolitis by clinical disease score, ınflammation, apoptosis, and oxidative stress markers. Pediatr Surg Int 17;40(1):80. doi: 10.1007/s00383-024-05669-1. PMID: 38493431.
  • 14. Damar İH, Eroz R (2022) Argyrophilic nucleolar organizer regions as new biomarkers in ST-Elevation myocardial infarction. J Cardiovasc Dev Dis 9(2):58. doi: 10.3390/jcdd9020058.
  • 15. Kaya M, Eroz R, Kabakliogli M (2022) Expression of nucleolin, nucleophosmin, upstream binding transcription factor genes and propolis in wound models. J Wound Care 31(Sup10):S28–S40. doi: 10.1296/jowc.
  • 16. Yesildag K, Kokulu K, Mutlu H, Eroz R, Taha-Sert E, Saritas A (2021) Argyrophilic nucleolar organizer regions as a promising biomarker for the detection of brain hypoxia levels caused by different doses of carbon monoxide poisoning. Gac Med Mex 157(6):610–617. doi: 10.2487/GMM.M21000625.
  • 17. Bonvicini C, Faraone SV, Scassellati C (2016) Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol Psychiatry ;21(7):872-84. doi: 10.1038/mp.2016.74.
  • 18. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126(1):51-90. doi: 10.1007/s00439-009-0694-x.
  • 19. Taurines R, Grünblatt E, Schecklmann M, Schwenck C, Albantakis L et al (2011) Altered mRNA expression of monoaminergic candidate genes in the blood of children with attention deficit hyperactivity disorder and autism spectrum disorder. World J Biol Psychiatry 1:104-8. doi: 10.3109/15622975.2011.600297.
  • 20. McCaffrey TA, Laurent G, Shtokalo D, Antonets D, Vyatkin Y, Jones D et al (2020) Biomarker discovery in attention deficit hyperactivity disorder: RNA sequencing of whole blood in discordant twin and case-controlled cohorts. BMC Med Genomics 28;13(1):160. doi: 10.1186/s12920-020-00808-8.
  • 21. Cabana-Domínguez J, Soler Artigas M, Arribas L, Alemany S, Vilar-Ribó L, Llonga N et al (2022) Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD). Transl Psychiatry 24;12(1):409. doi: 10.1038/s41398-022-02182-8.
  • 22. Mortimer N, Sánchez-Mora C, Rovira P, Vilar-Ribó L, Richarte V (2020) Transcriptome profiling in adult attention-deficit hyperactivity disorder. Eur Neuropsychopharmacol 41:160-166. doi: 10.1016/j.euroneuro.2020.11.005.
  • 23. Pagerols M, Richarte V, Sánchez-Mora C, Rovira P, Soler Artigas M, Garcia-Martínez I et al (2018) Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Sci Rep 30;8(1):1881. doi: 10.1038/s41598-018-20194-7.
  • 24. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15(3):532-4, 536-7.
  • 25. Cibrian FL, Lakes KD, Schuck SEB, Hayes GR (2022) The potential for emerging technologies to support self-regulation in children with ADHD: A literature review. International Journal of Child-Computer Interaction 31:100421. https://doi.org/10.1016/J.IJCCI.2021.100421
  • 26. Volkow ND, Wang GJ, Fowler JS, Ding YS (2005) Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry 1;57(11):1410-5. doi: 10.1016/j.biopsych.2004.11.006.
  • 27. Coghill DR, Banaschewski T, Lecendreux M, Soutullo C, Zuddas A, Adeyi B et al (2014) Post hoc analyses of the impact of previous medication on the efficacy of lisdexamfetamine dimesylate in the treatment of attention-deficit/hyperactivity disorder in a randomized, controlled trial. Neuropsychiatr Dis Treat 29;10:2039-47. doi: 10.2147/NDT.S68273.
  • 28. Grünblatt E, Geissler J, Jacob CP, Renner T, Müller M, Bartl J et al (2012) Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood. Atten Defic Hyperact Disord 4(2):77-84. doi: 10.1007/s12402-012-0074-6.
  • 29. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597-610. doi: 10.1038/nrg1655.
  • 30. Chan JC, Alenina N, Cunningham AM, Ramakrishnan A, Shen L, Bader M et al (2024) Serotonin transporter-dependent histone serotonylation in placenta contributes to the neurodevelopmental transcriptome. J Mol Biol 22:168454. doi: 10.1016/j.jmb.2024.168454.
  • 31. Sener EF, Korkmaz K, Öztop DB, Zararsız G, Özkul Y (2015) Investigation of SLC6A4 gene expression in autism spectrum disorders. J Clin Exp Invest 6(2):165-9. https://doi.org/10.5799/ahinjs.01.2015.02.0510
  • 32. Philibert RA, Sandhu H, Hollenbeck N, Gunter T, Adams W, Madan A (2008) The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am J Med Genet B Neuropsychiatr Genet 5;147B(5):543-9. doi: 10.1002/ajmg.b.30657.
  • 33. Buccoliero AM, Caporalini C, Moscardi S, Cetica V, Mei D, Conti V (2024) Leat-associated seizures the possible role of EAAT2, pyruvate carboxylase and glutamine synthetase. Epilepsy Res 199:107258. doi: 10.1016/j.eplepsyres.2023.107258.
  • 34. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP et al (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 25;102(43):15653-8. doi: 10.1073/pnas.0507901102.
  • 35. Malki K, Lourdusamy A, Binder E, Payá-Cano J, Sluyter F, Craig I et al (2012) Antidepressant-dependent mRNA changes in mouse associated with hippocampal neurogenesis in a mouse model of depression. Pharmacogenet Genomics ;22(11):765-76. doi: 10.1097/FPC.0b013e328356fa90.
  • 36. Fiorentino A, Sharp SI, McQuillin A (2015) Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur J Hum Gene 23(9):1200-6. doi: 10.1038/ejhg.2014.261.
  • 37. Huang J, Li B, Wei H, Li C, Liu C, Mi H et al (2024) Integrative analysis of gene expression profiles of substantia nigra identifies potential diagnosis biomarkers in Parkinson's disease. Sci Rep 25;14(1):2167. doi: 10.1038/s41598-024-52276-0.
  • 38. Ben-Dor DH, Zimmerman S, Sever J, Roz N, Apter A, Rehavi M et al (2007) Reduced platelet vesicular monoamine transporter density in Tourette's syndrome pediatric male patients. Eur Neuropsychopharmacol 17(8):523-6. doi: 10.1016/j.euroneuro.2007.01.002.
  • 39. Fehr C, Sommerlad D, Sander T, Anghelescu I, Dahmen N, Szegedi A et al (2013) Association of VMAT2 gene polymorphisms with alcohol dependence. J Neural Transm (Vienna) 120(8):1161-9. doi: 10.1007/s00702-013-0996-y. Epub 2013 Mar 17.
  • 40. Toren P, Rehavi M, Luski A, Roz N, Laor N, Lask M et al (2005) Decreased platelet vesicular monoamine transporter density in children and adolescents with attention deficit/hyperactivity disorder. Eur Neuropsychopharmacol 15(2):159-62. doi: 10.1016/j.euroneuro.
  • 41. Alter SP, Stout KA, Lohr KM, Taylor TN, Shepherd KR, Wang M et al (2016) Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration. Exp Neurol 275 Pt 1(Pt 1):17-24. doi: 10.1016/j.expneurol.2015.09.016
  • 42. Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL et al (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 25;27(30):8138-48. doi: 10.1523/JNEUROSCI.0319-07.2007.
  • 43. Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC et al (2008) Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem 106(5):2205-17. doi: 10.1111/j.1471-4159.2008.05568.x.
  • 44. Taylor TN, Alter SP, Wang M, Goldstein DS, Miller GW (2014) Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus. Neuropharmacology. 76 Pt A(0 0):97-105. doi: 10.1016/j.neuropharm.2013.08.033.
  • 45. Lohr KM, Chen M, Hoffman CA, McDaniel MJ, Stout KA, Dunn AR et al (2016) Vesicular Monoamine Transporter 2 (VMAT2) Level Regulates MPTP Vulnerability and Clearance of Excess Dopamine in Mouse Striatal Terminals. Toxicol Sci 153(1):79-88. doi: 10.1093/toxsci/kfw106.
  • 46. Brede M, Nagy G, Philipp M, Sorensen JB, Lohse MJ, Hein L (2003) Differential control of adrenal and sympathetic catecholamine release by alpha 2-adrenoceptor subtypes. Mol Endocrinol 17(8):1640-6. doi: 10.1210/me.2003-0035.
  • 47. Cho SC, Kim JW, Kim BN, Hwang JW, Shin MS, Park M et al (2008) Association between the alpha-2C-adrenergic receptor gene and attention deficit hyperactivity disorder in a Korean sample. Neurosci Lett 3;446(2-3):108-11. doi: 10.1016/j.neulet.2008.09.058.
  • 48. Barr CL, Wigg K, Zai G, Roberts W, Malone M, Schachar R et al (2001) Attention-deficit hyperactivity disorder and the adrenergic receptors alpha 1C and alpha 2C. Mol Psychiatry 6(3):334-7. doi: 10.1038/sj.mp.4000863.
  • 49. Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS (2023) The brain serotonin system in autism. Rev Neurosci 10;35(1):1-20. doi: 10.1515/revneuro-2023-0055..
  • 50. Liu L, Guan LL, Chen Y, Ji N, Li HM, Li ZH et al (2011) Association analyses of MAOA in Chinese Han subjects with attention-deficit/hyperactivity disorder: family-based association test, case-control study, and quantitative traits of impulsivity. Am J Med Genet B Neuropsychiatr Genet 156B(6):737-48. doi: 10.1002/ajmg.b.31217.
  • 51. Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J et al (2009) MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry 1;65(5):417-24. doi: 10.1016/j.biopsych.2008.09.013.
  • 52. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM et al (2003) Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116(1):127-37. doi: 10.1016/s0306-4522(02)00556-0.
  • 53. Sengupta S, Grizenko N, Schmitz N, Schwartz G, Bellingham J, Polotskaia A et al (2008) COMT Val108/158Met polymorphism and the modulation of task-oriented behavior in children with ADHD. Neuropsychopharmacology 33(13):3069-77. doi: 10.1038/npp.2008.85.
  • 54. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75(5):807-21. doi: 10.1086/425589.
  • 55. Dirlikov B, Shiels Rosch K, Crocetti D, Denckla MB, Mahone EM, Mostofsky SH (2014) Distinct frontal lobe morphology in girls and boys with ADHD. Neuroimage Clin 10;7:222-9. doi: 10.1016/j.nicl.2014.12.010.
  • 56. Sluis R Van Der, Sc M (2015) Investigation and characterisation of the genetic variation in the coding region of the glycine N-acyltransferase gene. North-West University (Potchefstroom Campus) May 2015.
  • 57. Mukherjee S, Manahan-Vaughan D (2013) Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology. 66:65-81. doi: 10.1016/j.neuropharm.2012.06.005.
  • 58. Xu J, Zhu Y, Contractor A, Heinemann SF (2009) mGluR5 has a critical role in inhibitory learning. J Neurosci 25;29(12):3676-84. doi: 10.1523/JNEUROSCI.5716-08.2009.
  • 59. Akutagava-Martins GC, Salatino-Oliveira A, Genro JP, Contini V, Polanczyk G, Zeni C et al (2014) Glutamatergic copy number variants and their role in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 165B(6):502-9. doi: 10.1002/ajmg.b.32253.
  • 60. Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B (2017) Variation in Gene Expression in Autism Spectrum Disorders: An Extensive Review of Transcriptomic Studies. Front Neurosci 5;10:601. doi: 10.3389/fnins.2016.00601.
  • 61. Mostafavi-Abdolmaleky H, Glatt SJ, Tusuang MT (2011) Epigenetics in Psychiatry. In: Epigenetic Aspects of Chronic Diseases. 2011; pp 163–174.
There are 61 citations in total.

Details

Primary Language English
Subjects Psychiatry, Medical Genetics (Excl. Cancer Genetics)
Journal Section Research Article
Authors

Hilal Akalın 0000-0002-2580-836X

Yakut Erdem 0000-0002-3425-6819

Recep Eröz 0000-0003-0840-2613

İzem Olcay Şahin 0000-0002-2105-4767

Nuriye Gökçe 0000-0001-7814-5224

Sevgi Özmen 0000-0002-7545-2824

Muhammet Ensar Doğan 0000-0002-5034-7083

Munis Dündar 0000-0003-0969-4611

Yusuf Özkul 0000-0002-4212-5763

Project Number TSD-12-4112
Publication Date March 20, 2025
Submission Date December 11, 2024
Acceptance Date February 9, 2025
Published in Issue Year 2025 Volume: 26 Issue: 1

Cite

EndNote Akalın H, Erdem Y, Eröz R, Şahin İO, Gökçe N, Özmen S, Doğan ME, Dündar M, Özkul Y (March 1, 2025) Gene Expressions Associated with Neurotransmitter Metabolism in Children with Attention Deficit Hyperactivity Disorder. Meandros Medical And Dental Journal 26 1 19–32.