Research Article
BibTex RIS Cite

Determination of effects of some fungicides used in hazelnut growing areas against Trichoderma species

Year 2020, , 335 - 340, 28.12.2020
https://doi.org/10.29136/mediterranean.714929

Abstract

In this study, the effects of some fungicides (boscalid+kresoxim methyl, fluopyram+tebuconazole, sulphur ve tetraconazole) used for control of powdery mildew disease in hazelnuts on Trichoderma harzianum (11-TTR-2), T. hamatum (F4), T. atroviride (T-4-5) and T. asperellum (T-11-25) were evaluated under in vitro conditions. The study showed that all concentrations (0.25×, 0.5×, 1.0× and 2.0×) of the fungicides significantly reduced the mycelial growth, spore germination and germ-tube elongation of Trichoderma isolates, when comparing to the control (P<0.05). Especially, fluopyram+tebuconazole was found to have the higher inhibitory effect to mycelial growth, spore germination and germ-tube elongation of all the isolates. Even at the lowest concentration (0.0625 mL L-1) used in the study, fluopyram+tebuconazole completely inhibited the mycelial growth of T. hamatum and T. asperellum, whereas it reduced mycelial growth of T. harzianum and T. atroviride by 93.97% and 89.48%, respectively. On the other hand, tetraconazole at a much higher concentration (1.0 mL L-1) were able to decrease the mycelial growth of T. harzianum and T. atroviride by 82.16% and 95.61%, respectively. Boscalid+kresoxim methyl and sulphur inhibited the mycelial growth of all four isolates at rates between 26.64-63.59% and 6.75-30.81%, respectively. The EC50 and the minimum inhibitory concentration (MIC) values indicated that fluopyram+tebuconazole was more toxic to all the isolates than tetraconazole. As a result, this study showed that boscalid+kresoxim methyl and sulphur can be recommended in hazelnut orchards, where Trichoderma spp. should be used against Xylosandrus germanus.

References

  • Bagwan NB (2010) Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integerated management of soil borne diseases of soybean [Glycine max (L.) Merril]. International Journal of Plant Protection 3: 206-209.
  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. International Microbiology 7(4): 249-260.
  • Castrillo LA, Griggs MH, Ranger CM, Reding ME, Vandenberg JD (2011) Virulence of commercial strains of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosandrus germanus (Coleoptera: Curculionidae) and impact on brood. Biological Control 58(2): 121-126.
  • Castrillo LA, Griggs MH, Vandenberg JD (2016) Competition between biological control fungi and fungal symbionts of ambrosia beetles Xylosandrus crassiusculus and X. germanus (Coleoptera: Curculionidae): mycelial interactions and impact on beetle brood production. Biological Control 103: 138-146.
  • Erper İ, Kushiyev R, Türkkan M, Tuncer C (2018). Evaluation of some fungicides against symbiotic fungus Ambrosiella hartigii associated with Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Selçuk Tarım ve Gıda Bilimleri Dergisi 32(1): 60-66.
  • GKGM (2020) Bitki Koruma Ürünleri Veri Tabanı. https://bku.tarim.gov.tr. Erişim 10 Şubat 2020.
  • Khan MO, Shahzad S (2007) Screening of Trichoderma species for tolerance to fungicides. Pakistan Journal of Botany 39(3): 945-951.
  • Kushiyev R, Tuncer C, Erper İ, Özdemir İO, Saruhan İ (2018) Efficacy of native entomopathogenic fungus, Isaria fumosorosea, against bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Egyptian Journal of Biological Pest Control 28(1): 55.
  • Marcellin ML, François ME, Valteri VA, Endali EMJ, Begoude BAD (2018) In vitro study of the compatibility of six fungicides with two strains of Trichoderma asperellum, biocontrol agents used against cacao black pod disease in Cameroon. International Journal of Innovation and Applied Studies 24(4): 1834-1848.
  • Ranganathaswamy M, Patibanda AK, Rao GN (2012) Evaluation of toxicity of agrochemicals on Trichoderma isolates in vitro. Journal of Biological Control 26(4): 391-395.
  • Roberti R, Badiali F, Pisi A, Veronesi A, Pancaldi D, Cesari A (2006) Sensitivity of Clonostachys rosea and Trichoderma spp. as potential biocontrol agents to pesticides. Journal of Phytopathology 154(2): 100-109.
  • Sarkar S, Narayanan P, Divakaran A, Balamurugan A, Premkumar R (2010) The in vitro effect of certain fungicides, insecticides, and biopesticides on mycelial growth in the biocontrol fungus Trichoderma harzianum. Turkish Journal of Biology 34(4): 399-403.
  • Silva MAFD, Moura KED, Moura KED, Salomão D, Patricio FRA (2018) Compatibility of Trichoderma isolates with pesticides used in lettuce crop. Summa Phytopathologica 44(2): 137-142.
  • Singh C, Sharma N, Singh BR (2016) Trichoderma harzianum: mass multiplication and its interaction with different fundicides. Journal of Biotechnology and Biosafety 4(1): 332-338.
  • Sonavane P, Venkataravanappa V (2017) Compatibility Studies of Trichoderma harzianum isolate with fungicides used against soil borne disease in Coorg Mandarin-Pepper-Coffee Plantations. International Journal of Current Microbiology and Applied Sciences 6(8): 346-354.
  • Suneeta P, Kumar SV, Aiyanathan KEA, Nakkeeran S (2017) Promissory Action of Trichoderma spp. and fungicides in the management of Fusarium wilt of gerbera. Journal of Pure and Applied Microbiology 11(1): 241-247.
  • Tuncer C, Knizek M, Hulcr J (2017) Scolytinae in hazelnut orchards of Turkey: clarification of species and identification key (Coleoptera, Curculionidae). ZooKeys 710: 65.
  • Tuncer C, Kushiyev R, Erper İ, Özdemir İO, Saruhan İ (2019). Efficacy of native isolates of Metarhizium anisopliae and Beauveria bassiana against the invasive ambrosia beetle, Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Egyptian Journal of Biological Pest Control 29(1): 28.
  • Türkkan M, Erper İ, Eser Ü, Baltacı A (2018) Evaluation of inhibitory effect of some bicarbonate salts and fungicides against hazelnut powdery mildew. Gesunde Pflanze 70: 39-44.
  • Weber BC, McPherson JE (1983) Life history of the ambrosia beetle Xylosandrus germanus (Coleoptera: Scolytidae). Annals of the Entomological Society of America 76(3): 455-462.

Fındık üretim alanlarında kullanılan bazı fungisitlerin Trichoderma türlerine karşı etkilerinin belirlenmesi

Year 2020, , 335 - 340, 28.12.2020
https://doi.org/10.29136/mediterranean.714929

Abstract

Bu çalışmada, fındıkta külleme hastalığının kontrolü için kullanılan bazı fungisit (boscalid+kresoxim methyl, fluopyram+tebuconazole, kükürt ve tetraconazole)’lerin Trichoderma harzianum (11-TTR-2), T. hamatum (F4), T. atroviride (T-4-5) ve T. asperellum (T-11-25) üzerine etkileri in vitro koşullarda değerlendirilmiştir. Çalışma, fungisitlerin bütün konsantrasyonları (0.25×, 0.5×, 1.0× ve 2.0×)’nın kontrol ile karşılaştırıldığında, Trichoderma izolatlarının misel gelişimini, spor çimlenmesini ve çim tüpü uzamasını önemli derecede azalttığını göstermiştir (P<0.05). Özellikle, fluopyram+tebuconazole’un dört izolatın misel gelişimi, spor çimlenmesi ve çim tüpü uzaması için daha yüksek engelleyici etkiye sahip olduğunu göstermiştir. Çalışmada kullanılan en düşük konsantrasyon (0.0625 mL L-1)’da bile fluopyram+tebuconazole, T. hamatum ve T. asperellum’un misel gelişimi tamamen engellemiştir, halbuki T. harzianum ve T. atroviride’nin misel gelişimini sırasıyla %93.97 ve %89.48’e kadar azaltmıştır. Diğer taraftan, tetraconazole çok daha yüksek bir konsantrasyonda (1.0 mL L-1) T. harzianum ve T. atroviride’nin misel gelişimini sırasıyla %82.16 ve %95.61’e kadar azaltabilmiştir. Boscalid+kresoxim methyl ve kükürt, dört Trichoderma izolatının misel gelişimini sırasıyla %26.64-63.59 ve %6.75-30.8 arasında değişen oranlarda engellemiştir. Fluopyram+tebuconazole’ün EC50 ve minimum engelleyici konsantrasyon (MIC) değerlerinin tüm izolatlar için tetraconazole’den çok daha toksik olduğunu göstermiştir. Sonuç olarak, bu çalışma boscalid+kresoxim methyl ve kükürtün Trichoderma spp.’nin Xylosandrus germanus’a karşı kullanılması gereken fındık bahçelerinde önerilebileceğini göstermiştir.

References

  • Bagwan NB (2010) Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integerated management of soil borne diseases of soybean [Glycine max (L.) Merril]. International Journal of Plant Protection 3: 206-209.
  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. International Microbiology 7(4): 249-260.
  • Castrillo LA, Griggs MH, Ranger CM, Reding ME, Vandenberg JD (2011) Virulence of commercial strains of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosandrus germanus (Coleoptera: Curculionidae) and impact on brood. Biological Control 58(2): 121-126.
  • Castrillo LA, Griggs MH, Vandenberg JD (2016) Competition between biological control fungi and fungal symbionts of ambrosia beetles Xylosandrus crassiusculus and X. germanus (Coleoptera: Curculionidae): mycelial interactions and impact on beetle brood production. Biological Control 103: 138-146.
  • Erper İ, Kushiyev R, Türkkan M, Tuncer C (2018). Evaluation of some fungicides against symbiotic fungus Ambrosiella hartigii associated with Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Selçuk Tarım ve Gıda Bilimleri Dergisi 32(1): 60-66.
  • GKGM (2020) Bitki Koruma Ürünleri Veri Tabanı. https://bku.tarim.gov.tr. Erişim 10 Şubat 2020.
  • Khan MO, Shahzad S (2007) Screening of Trichoderma species for tolerance to fungicides. Pakistan Journal of Botany 39(3): 945-951.
  • Kushiyev R, Tuncer C, Erper İ, Özdemir İO, Saruhan İ (2018) Efficacy of native entomopathogenic fungus, Isaria fumosorosea, against bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Egyptian Journal of Biological Pest Control 28(1): 55.
  • Marcellin ML, François ME, Valteri VA, Endali EMJ, Begoude BAD (2018) In vitro study of the compatibility of six fungicides with two strains of Trichoderma asperellum, biocontrol agents used against cacao black pod disease in Cameroon. International Journal of Innovation and Applied Studies 24(4): 1834-1848.
  • Ranganathaswamy M, Patibanda AK, Rao GN (2012) Evaluation of toxicity of agrochemicals on Trichoderma isolates in vitro. Journal of Biological Control 26(4): 391-395.
  • Roberti R, Badiali F, Pisi A, Veronesi A, Pancaldi D, Cesari A (2006) Sensitivity of Clonostachys rosea and Trichoderma spp. as potential biocontrol agents to pesticides. Journal of Phytopathology 154(2): 100-109.
  • Sarkar S, Narayanan P, Divakaran A, Balamurugan A, Premkumar R (2010) The in vitro effect of certain fungicides, insecticides, and biopesticides on mycelial growth in the biocontrol fungus Trichoderma harzianum. Turkish Journal of Biology 34(4): 399-403.
  • Silva MAFD, Moura KED, Moura KED, Salomão D, Patricio FRA (2018) Compatibility of Trichoderma isolates with pesticides used in lettuce crop. Summa Phytopathologica 44(2): 137-142.
  • Singh C, Sharma N, Singh BR (2016) Trichoderma harzianum: mass multiplication and its interaction with different fundicides. Journal of Biotechnology and Biosafety 4(1): 332-338.
  • Sonavane P, Venkataravanappa V (2017) Compatibility Studies of Trichoderma harzianum isolate with fungicides used against soil borne disease in Coorg Mandarin-Pepper-Coffee Plantations. International Journal of Current Microbiology and Applied Sciences 6(8): 346-354.
  • Suneeta P, Kumar SV, Aiyanathan KEA, Nakkeeran S (2017) Promissory Action of Trichoderma spp. and fungicides in the management of Fusarium wilt of gerbera. Journal of Pure and Applied Microbiology 11(1): 241-247.
  • Tuncer C, Knizek M, Hulcr J (2017) Scolytinae in hazelnut orchards of Turkey: clarification of species and identification key (Coleoptera, Curculionidae). ZooKeys 710: 65.
  • Tuncer C, Kushiyev R, Erper İ, Özdemir İO, Saruhan İ (2019). Efficacy of native isolates of Metarhizium anisopliae and Beauveria bassiana against the invasive ambrosia beetle, Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Egyptian Journal of Biological Pest Control 29(1): 28.
  • Türkkan M, Erper İ, Eser Ü, Baltacı A (2018) Evaluation of inhibitory effect of some bicarbonate salts and fungicides against hazelnut powdery mildew. Gesunde Pflanze 70: 39-44.
  • Weber BC, McPherson JE (1983) Life history of the ambrosia beetle Xylosandrus germanus (Coleoptera: Scolytidae). Annals of the Entomological Society of America 76(3): 455-462.
There are 20 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Elif Yıldırım 0000-0002-4912-2303

İsmail Oğuz Özdemir 0000-0001-9095-2109

Muharrem Türkkan 0000-0001-7779-9365

Celal Tuncer 0000-0002-9014-8003

Rahman Kushiyev 0000-0002-5298-7017

İsmail Erper 0000-0001-7952-8489

Publication Date December 28, 2020
Submission Date April 5, 2020
Published in Issue Year 2020

Cite

APA Yıldırım, E., Özdemir, İ. O., Türkkan, M., Tuncer, C., et al. (2020). Determination of effects of some fungicides used in hazelnut growing areas against Trichoderma species. Mediterranean Agricultural Sciences, 33(3), 335-340. https://doi.org/10.29136/mediterranean.714929
AMA Yıldırım E, Özdemir İO, Türkkan M, Tuncer C, Kushiyev R, Erper İ. Determination of effects of some fungicides used in hazelnut growing areas against Trichoderma species. Mediterranean Agricultural Sciences. December 2020;33(3):335-340. doi:10.29136/mediterranean.714929
Chicago Yıldırım, Elif, İsmail Oğuz Özdemir, Muharrem Türkkan, Celal Tuncer, Rahman Kushiyev, and İsmail Erper. “Determination of Effects of Some Fungicides Used in Hazelnut Growing Areas Against Trichoderma Species”. Mediterranean Agricultural Sciences 33, no. 3 (December 2020): 335-40. https://doi.org/10.29136/mediterranean.714929.
EndNote Yıldırım E, Özdemir İO, Türkkan M, Tuncer C, Kushiyev R, Erper İ (December 1, 2020) Determination of effects of some fungicides used in hazelnut growing areas against Trichoderma species. Mediterranean Agricultural Sciences 33 3 335–340.
IEEE E. Yıldırım, İ. O. Özdemir, M. Türkkan, C. Tuncer, R. Kushiyev, and İ. Erper, “Determination of effects of some fungicides used in hazelnut growing areas against Trichoderma species”, Mediterranean Agricultural Sciences, vol. 33, no. 3, pp. 335–340, 2020, doi: 10.29136/mediterranean.714929.
ISNAD Yıldırım, Elif et al. “Determination of Effects of Some Fungicides Used in Hazelnut Growing Areas Against Trichoderma Species”. Mediterranean Agricultural Sciences 33/3 (December 2020), 335-340. https://doi.org/10.29136/mediterranean.714929.
JAMA Yıldırım E, Özdemir İO, Türkkan M, Tuncer C, Kushiyev R, Erper İ. Determination of effects of some fungicides used in hazelnut growing areas against Trichoderma species. Mediterranean Agricultural Sciences. 2020;33:335–340.
MLA Yıldırım, Elif et al. “Determination of Effects of Some Fungicides Used in Hazelnut Growing Areas Against Trichoderma Species”. Mediterranean Agricultural Sciences, vol. 33, no. 3, 2020, pp. 335-40, doi:10.29136/mediterranean.714929.
Vancouver Yıldırım E, Özdemir İO, Türkkan M, Tuncer C, Kushiyev R, Erper İ. Determination of effects of some fungicides used in hazelnut growing areas against Trichoderma species. Mediterranean Agricultural Sciences. 2020;33(3):335-40.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.