Research Article
BibTex RIS Cite

Impacts of nano-TiO2 on the initial development stages of barley seedlings under salinity

Year 2021, , 109 - 116, 01.04.2021
https://doi.org/10.29136/mediterranean.816107

Abstract

The most important development period in cereal plants is the initial stage, that is, seed germination and early seedling development. Even if the barley is thought to be a partially salt-tolerant plant, it may be severely affected when exposed to salinity at initial developmental periods. Pre-treatment and preparation of seeds before sowing have an important in agriculture. Nano-seed priming treatment is a new approach used to increase germination, emergence and seedling growth recently. In this study, the effects of nano-TiO2 (0, 100, 200 mg L-1 n-TiO2) pre-application and ongoing/combination application under salinity (0, 100, 200, 300 mM NaCl) on germination and early seedling growth of barley plants were investigated. Root lengths (RL, mm), germination rates (GR, %), radicle emerging (RE, %), number of coleoptiles (CN) were measured depending on the day (1, 2, 3 days). At the end of the third day, seedling fresh and dry weights (FW,DW mg) were measured. The relative growth index (RGI) of root and mean germination time (MGT) were calculated. It was determined that the application of 100 mg L-1 n-TiO2 increased root length and RGI compared to control groups. It was observed that the application of 100 mg L-1 n-TiO2 significantly increased the germination percentage, biomass and root length especially in 100 mM salt conditions. Also, 100 mg L-1 n-TiO2 increased the RE too in 100 mM salt conditions (1st day). In this study, it was determined that 300 mM NaCl was inhibitory dose, and also germination remained below 20% in 200 mM NaCl in all groups

References

  • Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS (2020) Nanoparticle-mediated seed priming ımproves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports 10(1): 5037.
  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sánchez-Blanco MJ, Hernández JA (2017) Plant responses to salt stress: Adaptive mechanisms. Agronomy 7: 18.
  • An J, Hu P, Li F, Wu H, Shen Y, White J, Tian X, Li Z, Giraldo JP (2020) Emerging Investigator Series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano doi: 10.1039/d0en00387e .
  • Armin M, Asgharipour M, Razavi-Omrani M (2010) The effect of seed priming on germination and seedling growth of watermelon (Citrullus lanatus). Advances in Environmental Biology 4(3): 501-505.
  • Askari H, Kazemitabar SK, Zarrini HN, Saberi MH (2016) Salt tolerance assessment of barley (Hordeum vulgare L.) genotypes at germination stage by tolerance indices. Open Agriculture 1: 37-44.
  • Ayers AD (1953) Germination and emergence of several varieties of barley in salinized soil cultures. Agronomy Journal 45(2): 68.
  • Bacilieri FS, Pereira de Vasconcelos AC, Quintao Lana RM, Mageste JG, Torres JLR (2017) Titanium (Ti) in plant nutrition-A review. Australian Journal of Crop Science 11(4): 382-386.
  • Bağcı SA, Ekiz H, Yılmaz A (2003) Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry 27: 253-260.
  • Bennett MA, Fritz VA, Callan NW (1992) Impact of seed treatments on crop stand establishment. HortTechnology 2: 345-349.
  • Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biological Trace Element Research 155: 283-286.
  • Demi̇roğlu Topçu G, Özkan SŞ (2017) Farklı tuz (NaCl) konsantrasyonlarının bazı arpa (Hordeum vulgare L.) çeşitlerinin çimlenme özelliklerine etkisinin belirlenmesi. ÇOMÜ Ziraat Fakültesi Dergisi 5(2): 37-43.
  • do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C (2021) Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11(2): 267. doi: 10.3390/nano11020267.
  • Doğaroğlu Z, Köleli̇ N (2016) Titanyum dioksit ve titanyum dioksit-gümüş nanopartiküllerinin marul (Lactuca sativa) tohumunun çimlenmesine etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31(ÖS2): 193-198. doi: 10.21605/cukurovaummfd.316762.
  • Feizi H, Razavi P, Shahtahmasebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146: 101-106.
  • Gao Y, Cui Y, Long R, Sun Y, Zhang T, Yang Q, Kang J (2018) Salt-stress induced proteomic changes of two contrasting alfalfa cultivars during germination stage. Journal of Science of Food and Agriculture 99(3): 1384-1396.
  • Garcia-Lopez JS, Lira-Saldivar RH, Zavala-Garcıa F, Olivares-Saenz E, Nino-Medina G, Ruiz-Torres NA, Mendez-Arguello B, Dıaz-Barriga E (2018) Effects of zinc oxide nanoparticles on growth and antioxidant enzymes of Capsicum chinense. Toxicological&Environmental Chemistry 100: 560-572 ISSN: 0277-2248.
  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry 60(39): 9781-9792.
  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020) Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports 10(1): 912.
  • Haghighi M, Teixeira da Silva JA (2014) The effect of N-TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology 17(4): 221-227.
  • Katerji N, Hoorn JW, Hamdy A, Mastrorilli M, Fares C, Ceccarelli S, Grando S, Oweis T (2006) Classification and salt tolerance analysis of barley varieties. Agricultural Water Management 851(1-2): 184-192.
  • Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy 24: 291-295.
  • Koksal N, Agar A, Yasemin S (2015) The effects of top coat substrates on seedling growth of marigold. Journal of Applied Biological Sciences 9(3): 66-72.
  • Korkmaz A, Pill WG (2003) The effect of different priming treatments and storage conditions on germination performance of lettuce seeds. European Journal of Horticultural Science 68(6): 260-265.
  • Liu HH, Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environmental Science & Technology 48(6): 3281-3292.
  • Lutts S, Benincasa P, Wojtyla L, Szymon Kubala S, Pace R, Lechowska K, Quinet M, Garnczarska M (2016) Seed priming: new comprehensive approaches for an old empirical technique. New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. Intechopen.
  • Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Frontiers in Plant Science 8: 597.
  • Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science 46(11): 3669-3686.
  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports 7(1): 8263.
  • Mahdy AM, Sherif FF, Elkhatib EA, Fathi NO, Ahmed MH (2020) Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition 43(12): 1862-1874. doi: 10.1080/01904167.2020.1750647.
  • Mahmood K (2011) Salinity tolerance in barley (Hordeum vulgare L.): Effects of varying NaCl, K+ /Na+ and NaHCO3 levels on cultivars differing in tolerance. Pakistan Journal of Botany 43: 1651-1654.
  • Mutlu F, Yürekli F, Mutlu B, Emre FB, Okusluk F, Ozgul O (2018) Assessment of phytotoxic and genotoxic effects of anatase TiO2 nanoparticles on maize cultivar by using rapd analysis. Fresenius Environmental Bulletin 27(1): 436-445.
  • OECD (2010). List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: Revision. safety of manufactured nanomaterials.
  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A. (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6:047, doi: 10.1093/aobpla/plu047.
  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research 14(9): 1109.
  • Ren J, Sun LN, Zhang QY, Song XS (2016) Drought tolerance is correlated with the activity of antioxidant enzymes in Cerasus humilis seedlings. Biomed Research International 7: 1-9.
  • Theerakulpisut P, Kanawapee N, Panwong B (2016) Seed priming alleviated salt stress effects on rice seedlings by improving Na+/K+ and maintaining membrane integrity. International Journal of Plant Biology 7(6402): 53-58.
  • Younes NA, Shokry Hassan H, Elkady MF, Hamed AM, Dawood MFA (2020) Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops. Heliyon 6(1): E03188. doi: 10.1016/j.heliyon.2020.e03188.

Nano-TiO2'in tuzlulukta arpa fidelerinin ilk gelişim aşamaları üzerine etkileri

Year 2021, , 109 - 116, 01.04.2021
https://doi.org/10.29136/mediterranean.816107

Abstract

Tahıl bitkilerindeki en önemli dönem, başlangıç aşaması, yani tohum çimlenmesi ve erken fide gelişimidir. Arpanın kısmen tuza toleranslı olduğu düşünülse bile, belirli gelişim dönemlerinde tuzluluğa maruz kaldığında ciddi şekilde etkilenebilir. Ekim öncesi tohumların ön işlemden geçirilmesi ve hazırlanması tarımda önemli bir yere sahiptir. Nano-tohum hazırlama uygulaması son zamanlarda çimlenme, ortaya çıkış ve fide büyümesini arttırmak için kullanılan yeni bir yaklaşımdır. Bu nedenle, bu araştırmada, tuzluluk durumunda (0, 100, 200, 300 mM NaCl) nano-TiO2 (0, 100, 200 mg L-1 TiO2) ön uygulaması ve devam eden/kombinasyon uygulamalar ile çimlenme ve erken fide büyümesi üzerindeki etkilerini araştıran bir çalışma tasarlanmıştır. Çalışmada güne bağlı olarak kök uzunlukları (mm), çimlenme oranları (%), radikula çıkışı (%) koleoptil sayısı ölçüldü (1, 2, 3. gün). Üçüncü günün sonunda taze ve kuru ağırlık (mg) belirlendi. Kökün bağıl büyüme indeksi ve ortalama çimlenme süresi hesaplandı. 100 mg L-1 n-TiO2 uygulamasının kontrol gruplarına kıyasla kök uzunluğunu ve kökün bağıl büyüme indeksini arttırdığı belirlenmiştir. 100 mg L-1 n-TiO2 uygulamasının çimlenme yüzdesini, biyokütleyi ve kök uzunluğunu özellikle 100 mM tuz koşullarında önemli ölçüde arttırdığı gözlenmiştir. Ayrıca, 100 mg L-1 n-TiO2, 100 mM tuz koşullarında (1. gün) radikula çıkışını da arttırdı. Bu çalışmada, 300 mM NaCl'nin inhibitör doz olduğu ve ayrıca çimlenmenin 200 mM NaCl içinde tüm gruplarda %20’nin altında kaldığı belirlenmiştir.

References

  • Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS (2020) Nanoparticle-mediated seed priming ımproves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports 10(1): 5037.
  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sánchez-Blanco MJ, Hernández JA (2017) Plant responses to salt stress: Adaptive mechanisms. Agronomy 7: 18.
  • An J, Hu P, Li F, Wu H, Shen Y, White J, Tian X, Li Z, Giraldo JP (2020) Emerging Investigator Series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano doi: 10.1039/d0en00387e .
  • Armin M, Asgharipour M, Razavi-Omrani M (2010) The effect of seed priming on germination and seedling growth of watermelon (Citrullus lanatus). Advances in Environmental Biology 4(3): 501-505.
  • Askari H, Kazemitabar SK, Zarrini HN, Saberi MH (2016) Salt tolerance assessment of barley (Hordeum vulgare L.) genotypes at germination stage by tolerance indices. Open Agriculture 1: 37-44.
  • Ayers AD (1953) Germination and emergence of several varieties of barley in salinized soil cultures. Agronomy Journal 45(2): 68.
  • Bacilieri FS, Pereira de Vasconcelos AC, Quintao Lana RM, Mageste JG, Torres JLR (2017) Titanium (Ti) in plant nutrition-A review. Australian Journal of Crop Science 11(4): 382-386.
  • Bağcı SA, Ekiz H, Yılmaz A (2003) Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry 27: 253-260.
  • Bennett MA, Fritz VA, Callan NW (1992) Impact of seed treatments on crop stand establishment. HortTechnology 2: 345-349.
  • Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biological Trace Element Research 155: 283-286.
  • Demi̇roğlu Topçu G, Özkan SŞ (2017) Farklı tuz (NaCl) konsantrasyonlarının bazı arpa (Hordeum vulgare L.) çeşitlerinin çimlenme özelliklerine etkisinin belirlenmesi. ÇOMÜ Ziraat Fakültesi Dergisi 5(2): 37-43.
  • do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C (2021) Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11(2): 267. doi: 10.3390/nano11020267.
  • Doğaroğlu Z, Köleli̇ N (2016) Titanyum dioksit ve titanyum dioksit-gümüş nanopartiküllerinin marul (Lactuca sativa) tohumunun çimlenmesine etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31(ÖS2): 193-198. doi: 10.21605/cukurovaummfd.316762.
  • Feizi H, Razavi P, Shahtahmasebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146: 101-106.
  • Gao Y, Cui Y, Long R, Sun Y, Zhang T, Yang Q, Kang J (2018) Salt-stress induced proteomic changes of two contrasting alfalfa cultivars during germination stage. Journal of Science of Food and Agriculture 99(3): 1384-1396.
  • Garcia-Lopez JS, Lira-Saldivar RH, Zavala-Garcıa F, Olivares-Saenz E, Nino-Medina G, Ruiz-Torres NA, Mendez-Arguello B, Dıaz-Barriga E (2018) Effects of zinc oxide nanoparticles on growth and antioxidant enzymes of Capsicum chinense. Toxicological&Environmental Chemistry 100: 560-572 ISSN: 0277-2248.
  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry 60(39): 9781-9792.
  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020) Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports 10(1): 912.
  • Haghighi M, Teixeira da Silva JA (2014) The effect of N-TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology 17(4): 221-227.
  • Katerji N, Hoorn JW, Hamdy A, Mastrorilli M, Fares C, Ceccarelli S, Grando S, Oweis T (2006) Classification and salt tolerance analysis of barley varieties. Agricultural Water Management 851(1-2): 184-192.
  • Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy 24: 291-295.
  • Koksal N, Agar A, Yasemin S (2015) The effects of top coat substrates on seedling growth of marigold. Journal of Applied Biological Sciences 9(3): 66-72.
  • Korkmaz A, Pill WG (2003) The effect of different priming treatments and storage conditions on germination performance of lettuce seeds. European Journal of Horticultural Science 68(6): 260-265.
  • Liu HH, Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environmental Science & Technology 48(6): 3281-3292.
  • Lutts S, Benincasa P, Wojtyla L, Szymon Kubala S, Pace R, Lechowska K, Quinet M, Garnczarska M (2016) Seed priming: new comprehensive approaches for an old empirical technique. New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. Intechopen.
  • Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Frontiers in Plant Science 8: 597.
  • Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science 46(11): 3669-3686.
  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports 7(1): 8263.
  • Mahdy AM, Sherif FF, Elkhatib EA, Fathi NO, Ahmed MH (2020) Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition 43(12): 1862-1874. doi: 10.1080/01904167.2020.1750647.
  • Mahmood K (2011) Salinity tolerance in barley (Hordeum vulgare L.): Effects of varying NaCl, K+ /Na+ and NaHCO3 levels on cultivars differing in tolerance. Pakistan Journal of Botany 43: 1651-1654.
  • Mutlu F, Yürekli F, Mutlu B, Emre FB, Okusluk F, Ozgul O (2018) Assessment of phytotoxic and genotoxic effects of anatase TiO2 nanoparticles on maize cultivar by using rapd analysis. Fresenius Environmental Bulletin 27(1): 436-445.
  • OECD (2010). List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: Revision. safety of manufactured nanomaterials.
  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A. (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6:047, doi: 10.1093/aobpla/plu047.
  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research 14(9): 1109.
  • Ren J, Sun LN, Zhang QY, Song XS (2016) Drought tolerance is correlated with the activity of antioxidant enzymes in Cerasus humilis seedlings. Biomed Research International 7: 1-9.
  • Theerakulpisut P, Kanawapee N, Panwong B (2016) Seed priming alleviated salt stress effects on rice seedlings by improving Na+/K+ and maintaining membrane integrity. International Journal of Plant Biology 7(6402): 53-58.
  • Younes NA, Shokry Hassan H, Elkady MF, Hamed AM, Dawood MFA (2020) Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops. Heliyon 6(1): E03188. doi: 10.1016/j.heliyon.2020.e03188.
There are 37 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Ayşin Güzel Değer 0000-0001-6336-1872

Sertan Çevik 0000-0003-1259-7863

Publication Date April 1, 2021
Submission Date October 25, 2020
Published in Issue Year 2021

Cite

APA Güzel Değer, A., & Çevik, S. (2021). Impacts of nano-TiO2 on the initial development stages of barley seedlings under salinity. Mediterranean Agricultural Sciences, 34(1), 109-116. https://doi.org/10.29136/mediterranean.816107
AMA Güzel Değer A, Çevik S. Impacts of nano-TiO2 on the initial development stages of barley seedlings under salinity. Mediterranean Agricultural Sciences. April 2021;34(1):109-116. doi:10.29136/mediterranean.816107
Chicago Güzel Değer, Ayşin, and Sertan Çevik. “Impacts of Nano-TiO2 on the Initial Development Stages of Barley Seedlings under Salinity”. Mediterranean Agricultural Sciences 34, no. 1 (April 2021): 109-16. https://doi.org/10.29136/mediterranean.816107.
EndNote Güzel Değer A, Çevik S (April 1, 2021) Impacts of nano-TiO2 on the initial development stages of barley seedlings under salinity. Mediterranean Agricultural Sciences 34 1 109–116.
IEEE A. Güzel Değer and S. Çevik, “Impacts of nano-TiO2 on the initial development stages of barley seedlings under salinity”, Mediterranean Agricultural Sciences, vol. 34, no. 1, pp. 109–116, 2021, doi: 10.29136/mediterranean.816107.
ISNAD Güzel Değer, Ayşin - Çevik, Sertan. “Impacts of Nano-TiO2 on the Initial Development Stages of Barley Seedlings under Salinity”. Mediterranean Agricultural Sciences 34/1 (April 2021), 109-116. https://doi.org/10.29136/mediterranean.816107.
JAMA Güzel Değer A, Çevik S. Impacts of nano-TiO2 on the initial development stages of barley seedlings under salinity. Mediterranean Agricultural Sciences. 2021;34:109–116.
MLA Güzel Değer, Ayşin and Sertan Çevik. “Impacts of Nano-TiO2 on the Initial Development Stages of Barley Seedlings under Salinity”. Mediterranean Agricultural Sciences, vol. 34, no. 1, 2021, pp. 109-16, doi:10.29136/mediterranean.816107.
Vancouver Güzel Değer A, Çevik S. Impacts of nano-TiO2 on the initial development stages of barley seedlings under salinity. Mediterranean Agricultural Sciences. 2021;34(1):109-16.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.