Research Article
BibTex RIS Cite

Etlik piliçlerde embriyonun erken ve geç gelişim dönemlerinde yapılan yüksek ısıl uygulamaların büyüme özelliklerine etkileri

Year 2016, Volume: 29 Issue: 3, 149 - 154, 26.12.2016

Abstract



Yapılan ıslah çalışmalarıyla
ticari etlik piliç hibritlerinin büyüme hızları ve kas gelişimleri önemli
ölçüde artmıştır. Hızlı büyüme ve kas gelişiminde gerçekleşen bu ilerlemeler,
yüksek ısıl koşullarda metabolizmanın ısıl düzenlemesini sağlayan mekanizmada
da önemli değişikliklere neden olmuştur. Kuluçka süresince uygulanan düşük veya
yüksek ısıl uygulamayla kazanılan epigenetik adaptasyon sayesinde, çıkıştan
sonraki dönemde vücudun ısı düzenleme sistemine düşük veya yüksek ısıya karşı
savunma yeteneği kazandırılabilmektedir. Bu araştırmada, etlik piliçlerde
embriyonun erken ve geç gelişim dönemlerinde yapılan yüksek ısıl
uygulamalarının büyüme özellikleri üzerine etkilerinin belirlenmesi
amaçlanmıştır. Bu amaçla etlik piliçlerin büyüme örnekleri Gompertz doğrusal
olmayan regresyon modeli ile analiz edilmiştir. Ergin yaş ağırlığını temsil
eden β0 parametresi bakımından deneme grupları ve cinsiyet grupları
arasında önemli farklılıklar saptanmıştır (P<0.05). Kontrol, geç ve erken
embriyonik dönem gruplarındaki piliçler için β0 parametrelerine ait
ortalama değerler sırasıyla 3952.28 g, 4044.45 g ve 4010.09 g olarak tahmin
edilmiştir. Yine β0 parametresi bakımından en yüksek ortalama erken
embriyonik dönem grubunun erkeklerinde (4560.75 g), en düşük ortalama ise
kontrol grubundaki dişilerde (3603 g) tespit edilmiştir. Araştırma sonuçlarına
göre erken ve geç embriyonik dönemlerde yapılan yüksek ısıl uygulamalar Gompertz
fonksiyonunun parametre tahminlerini önemli derecede etkilemiştir.




References

  • Aggrey SE (2002) Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science 81: 1782–1788.
  • Akbaş Y, Oğuz I (1998) Growth curve parameters of line of Japanese quail (Coturnix coturnix Japonica), unselected and selected for four-week body weight. Archive für Geflugelkunde 62: 104–109.
  • Akbaş Y, Yaylak E (2000) Heritability estimates of growth curve parameters and genetic correlations between the growth curve parameters and weights at different age of Japanese quail. Archiv für Geflügelkunde 64: 141-146.
  • Alkan S, Narinç D, Karslı T, Karabağ K, Balcıoğlu MS (2012) Effects of thermal manipulations during early and late embryogenesis on growth characteristics in Japanese quails. Archiv für Geflügelkunde 76: 184–190.
  • Alkan S, Mutaf S (2008) Farklı sıcaklık ve nem koşullarının farklı genotiplerdeki etlik piliçlerin vücut sıcaklıklarına ve canlı ağırlıklarına etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 21, 45-54
  • De Oliveira JE, Uni Z, Ferket PR (2008) Important metabolic path ways in poultry embryos prior to hatch. World’s Poultry Science Journal 64: 488–499.
  • Decuypere E, Bruggeman V (2007) The endocrine interface of environmental and egg factors affecting chick quality. Poultry Science 86: 1037–1042.
  • Dourado LRB, Sakomura NK, Nascimento DCN, Dorigam JC, Marcato SM, Fernandes JBK (2009) Growth and performance of naked neck broiler reared in free-range system. Ciência a Agrotecnologia 33: 875-881.
  • Gous RM, Moran ET, Stilborn HR, Bradford GD, Emmans GC (1999) Evaluation of the parameters needed to describe the overall growth, the chemical growth, and the growth of feathers and breast muscles of broilers. Poultry Science 78: 812-821.
  • Halevy O, Lavi M, Yahav S (2006) Enhancement of meat production by thermal manipulations during embryogenesis of broilers. In: New Insights into Fundamental Physiology and Peri-natal Adaptation of Domestic Fowl. Edited by S Yahav and B. Tzschentke. Nottingham University Press, UK, pp. 77-87.
  • Halle I, Tzschentke B (2011) Influence of temperature manipulations during the last 4 days of incubation on hatching results, post-hatching performance and adaptability to warm growing conditions in broiler chickens. Poultry Science 48: 97-105.
  • Knizetova HJ, Hyanek B, Knize L, Roubicek J (1991) Analysis of growth curves in fowl. I. Chickens. British Poultry Science 32: 1027-1038.
  • Marcato SM, Sakomura NK, Munari DP, Fernandes JBK, Kawauchi I.M, Bonato MA (2008) Growth and body nutrient deposition of two broiler commercial genetic lines. British Poultry Science 10: 117-123.
  • Molenaar R, Devries S, Van den Anker I, Meijerhof R, Kemp B,Van den Brand H (2010) Effect of eggshell temperature and hole in the aircell on the perinatal development and physiology of layer hatchlings. Poultry Science 89: 1716-1723.
  • Narinç D, Aksoy T, İlaslan Çürek D, Karaman E (2007) Farklı Gelişme Hızına Sahip Etlik Piliçlerde Büyümenin Analizi. Hayvancılık Araştırma Dergisi 17: 1–8.
  • Narinç D, Aksoy T, Karaman E (2010a) Genetic parameters of growth curve parameters and weekly body weights in Japanese quail. Journal of Animal and Veterinary Advances 9: 501-507.
  • Narinç D, Karaman E, Fırat MZ, Aksoy T (2010b) Comparison of non-linear growth models to describe the growth in Japanese quail. Journal of Animal and Veterinary Advances 9: 1961-1966.
  • Narinç D, Aksoy T, Karaman E, Çürek Dİ (2010c) Analysis of fitting growth models in medium growing chicken raised indoor system. Trends Animal Veterinary Science Journal 1:12-18.
  • Narinç D, Aksoy T, Karaman E, Fırat MZ (2014) Genetic parameter estimates of growth curve and reproduction traits in Japanese quail. Poultry Science 93: 24-30.
  • Narinç D, Erdoğan S, Tahtabiçen E, Aksoy T (2016) Effects of thermal manipulations during embryogenesis of broiler chickens on developmental stability, hatchability and chick quality. Animal 10: 1-8.
  • Nichelmann M, Tzschentke B (2002) Ontogeny of thermo regulation precocial birds. Comparative Biochemistry and Physiology Part A, 131: 751–763.
  • Piestun Y, Halevy O, Shinder D, Ruzal M, Druyanand S, Yahav S (2011) Thermal manipulations during broiler embryogenesis improves post hatch performance under hot conditions. Journal of Thermal Biology 36: 469–474.
  • Ricklefs RE (1985) Modification of growth and development of muscles of poultry. Poultry Science 64: 1563–1576.
  • Sakomura NK, Longo F, Rondon EO, Rabello CBV, Ferraudo AS 2005 Modeling energy utilization and growth parameter description for broiler chickens. Poultry Science 84: 1363-1369.
  • Santos AL, Sakomura NK, Freitas ER, Fortes CMS, Carrilho ENVM (2005) Comparison of free range broiler chicken strains raised in confinedor semi-confined systems. Revista Brasileira de Ciência Avicola 7: 85–92.
  • SAS (2005) User’s Guide, Version 9.1.3. SAS Institute Inc., Cary, NC
  • Topal M, Bölükbaşı SC (2008) Comparison of nonlinear growth curve models in broiler chickens. Journal of Applied Animal Research 34: 149-152.
  • Tzschentke B, Basta D, Nichelmann M (2001) Epigenetic temperature adaptation in birds: peculiarities and similarities in comparison to acclimation. Nervus Biomedical Science 1: 26-31.
  • Tzschentke B, Basta D, Janke O, Maier I (2004) Characteristics of early development of body functions and epigenetic adaptation to the environment in poultry: focused on development of control nervous mechanisms. Avian Poultry Biology Reviews 15: 107-118.
  • Tzschentke B, Halle I (2009) Influence of temperature stimulation during the last 4 days of incubation on secondary sex ratio and later performance in male and female broiler chicks. British Poultry Science 50: 634-640.
  • Uni Z, Yahav S (2010) Managing pre-natal development of broiler chickens to improve productivity and thermotolerance. In: Managing Prenatal Development to Enhance Livestock Productivity. Edited by: P. Greenwood, A. Bell, P.E. Vercoe and G.J. Viljoen. SpringerPress, Dordrecht-Heidelberg, London, New York. pp. 71-90
  • Üçkardeş F, Narinç D (2014) An application of modified Logistic and Gompertz growthmodels in Japanese guail. Indian Journal of Animal Sciences 84: 903–907.
  • Werner C, Wecke C, Lıebert F, Wicke M (2010) Increasing the incubation temperature between embryonic day 7 and 10 has no influence on the growth and slaughter characteristics as well as meat quality of broilers. Animal, 4: 810-816.
  • Yahav S, Hurwitz S (1996) Induction of thermotolerance in male broiler chickens by temperature conditioning at an early age. Poultry Science 75: 402–406.
  • Yahav S, Shinder D, Tanny J, Cohen S (2005) Sensible heat loss – the broilers paradox. World’s Poultry Science Journal 61: 419-435.
  • Yakupoğlu C, Atil H (2001) Comparison of growth curve models on broilers growth curve I: Parameters estimation. Online Journal Biology Science 1: 680-681.

Effects of high thermal manipulations during early and late embryogenesis on growth characteristics of broilers

Year 2016, Volume: 29 Issue: 3, 149 - 154, 26.12.2016

Abstract

Genetic selection has significantly improved the growth rate and muscle
development of fast-growing broiler chickens. Rapid growth rate and improved
muscle tissue have presented broiler chickens with serious difficulties when
called on to thermoregulation efficiently in hot environmental conditions. Altering
the incubation temperature and humidity may induce an improvement in the
acquisition of thermo tolerance. During the incubation period, lower or higher
incubation thermals alter postnatal thermoregulatory systems by inducing
epigenetic adaptation to postnatal low or high environmental heat.
The aim of this study was carried out to
investigate the effects of high thermal manipulations during early and late embryogenesis
on growth characteristics of broilers. With this aim, the Gompertz nonlinear regression
model was fitted to growth patterns of broiler chickens in each group. S
ignificant
differences were found in terms of β0 parameter which representing
the mature body weight in both treatment groups and genders (P<0.05). Mean values
of the β0 parameters for control, late and early groups were
estimated as 3952.28 g, 4044.45 g and 4010.09 g, respectively. Also, the
highest average value in point of the parameter β0 was found in the
early embryonic group for male (4560.75 g), in contrast, lowest average value
was determined in the control group for female (3603).
According to the results, high thermal manipulations
during early and late embryogenesis periods significantly affected parameter estimates
of Gompertz function.



References

  • Aggrey SE (2002) Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science 81: 1782–1788.
  • Akbaş Y, Oğuz I (1998) Growth curve parameters of line of Japanese quail (Coturnix coturnix Japonica), unselected and selected for four-week body weight. Archive für Geflugelkunde 62: 104–109.
  • Akbaş Y, Yaylak E (2000) Heritability estimates of growth curve parameters and genetic correlations between the growth curve parameters and weights at different age of Japanese quail. Archiv für Geflügelkunde 64: 141-146.
  • Alkan S, Narinç D, Karslı T, Karabağ K, Balcıoğlu MS (2012) Effects of thermal manipulations during early and late embryogenesis on growth characteristics in Japanese quails. Archiv für Geflügelkunde 76: 184–190.
  • Alkan S, Mutaf S (2008) Farklı sıcaklık ve nem koşullarının farklı genotiplerdeki etlik piliçlerin vücut sıcaklıklarına ve canlı ağırlıklarına etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 21, 45-54
  • De Oliveira JE, Uni Z, Ferket PR (2008) Important metabolic path ways in poultry embryos prior to hatch. World’s Poultry Science Journal 64: 488–499.
  • Decuypere E, Bruggeman V (2007) The endocrine interface of environmental and egg factors affecting chick quality. Poultry Science 86: 1037–1042.
  • Dourado LRB, Sakomura NK, Nascimento DCN, Dorigam JC, Marcato SM, Fernandes JBK (2009) Growth and performance of naked neck broiler reared in free-range system. Ciência a Agrotecnologia 33: 875-881.
  • Gous RM, Moran ET, Stilborn HR, Bradford GD, Emmans GC (1999) Evaluation of the parameters needed to describe the overall growth, the chemical growth, and the growth of feathers and breast muscles of broilers. Poultry Science 78: 812-821.
  • Halevy O, Lavi M, Yahav S (2006) Enhancement of meat production by thermal manipulations during embryogenesis of broilers. In: New Insights into Fundamental Physiology and Peri-natal Adaptation of Domestic Fowl. Edited by S Yahav and B. Tzschentke. Nottingham University Press, UK, pp. 77-87.
  • Halle I, Tzschentke B (2011) Influence of temperature manipulations during the last 4 days of incubation on hatching results, post-hatching performance and adaptability to warm growing conditions in broiler chickens. Poultry Science 48: 97-105.
  • Knizetova HJ, Hyanek B, Knize L, Roubicek J (1991) Analysis of growth curves in fowl. I. Chickens. British Poultry Science 32: 1027-1038.
  • Marcato SM, Sakomura NK, Munari DP, Fernandes JBK, Kawauchi I.M, Bonato MA (2008) Growth and body nutrient deposition of two broiler commercial genetic lines. British Poultry Science 10: 117-123.
  • Molenaar R, Devries S, Van den Anker I, Meijerhof R, Kemp B,Van den Brand H (2010) Effect of eggshell temperature and hole in the aircell on the perinatal development and physiology of layer hatchlings. Poultry Science 89: 1716-1723.
  • Narinç D, Aksoy T, İlaslan Çürek D, Karaman E (2007) Farklı Gelişme Hızına Sahip Etlik Piliçlerde Büyümenin Analizi. Hayvancılık Araştırma Dergisi 17: 1–8.
  • Narinç D, Aksoy T, Karaman E (2010a) Genetic parameters of growth curve parameters and weekly body weights in Japanese quail. Journal of Animal and Veterinary Advances 9: 501-507.
  • Narinç D, Karaman E, Fırat MZ, Aksoy T (2010b) Comparison of non-linear growth models to describe the growth in Japanese quail. Journal of Animal and Veterinary Advances 9: 1961-1966.
  • Narinç D, Aksoy T, Karaman E, Çürek Dİ (2010c) Analysis of fitting growth models in medium growing chicken raised indoor system. Trends Animal Veterinary Science Journal 1:12-18.
  • Narinç D, Aksoy T, Karaman E, Fırat MZ (2014) Genetic parameter estimates of growth curve and reproduction traits in Japanese quail. Poultry Science 93: 24-30.
  • Narinç D, Erdoğan S, Tahtabiçen E, Aksoy T (2016) Effects of thermal manipulations during embryogenesis of broiler chickens on developmental stability, hatchability and chick quality. Animal 10: 1-8.
  • Nichelmann M, Tzschentke B (2002) Ontogeny of thermo regulation precocial birds. Comparative Biochemistry and Physiology Part A, 131: 751–763.
  • Piestun Y, Halevy O, Shinder D, Ruzal M, Druyanand S, Yahav S (2011) Thermal manipulations during broiler embryogenesis improves post hatch performance under hot conditions. Journal of Thermal Biology 36: 469–474.
  • Ricklefs RE (1985) Modification of growth and development of muscles of poultry. Poultry Science 64: 1563–1576.
  • Sakomura NK, Longo F, Rondon EO, Rabello CBV, Ferraudo AS 2005 Modeling energy utilization and growth parameter description for broiler chickens. Poultry Science 84: 1363-1369.
  • Santos AL, Sakomura NK, Freitas ER, Fortes CMS, Carrilho ENVM (2005) Comparison of free range broiler chicken strains raised in confinedor semi-confined systems. Revista Brasileira de Ciência Avicola 7: 85–92.
  • SAS (2005) User’s Guide, Version 9.1.3. SAS Institute Inc., Cary, NC
  • Topal M, Bölükbaşı SC (2008) Comparison of nonlinear growth curve models in broiler chickens. Journal of Applied Animal Research 34: 149-152.
  • Tzschentke B, Basta D, Nichelmann M (2001) Epigenetic temperature adaptation in birds: peculiarities and similarities in comparison to acclimation. Nervus Biomedical Science 1: 26-31.
  • Tzschentke B, Basta D, Janke O, Maier I (2004) Characteristics of early development of body functions and epigenetic adaptation to the environment in poultry: focused on development of control nervous mechanisms. Avian Poultry Biology Reviews 15: 107-118.
  • Tzschentke B, Halle I (2009) Influence of temperature stimulation during the last 4 days of incubation on secondary sex ratio and later performance in male and female broiler chicks. British Poultry Science 50: 634-640.
  • Uni Z, Yahav S (2010) Managing pre-natal development of broiler chickens to improve productivity and thermotolerance. In: Managing Prenatal Development to Enhance Livestock Productivity. Edited by: P. Greenwood, A. Bell, P.E. Vercoe and G.J. Viljoen. SpringerPress, Dordrecht-Heidelberg, London, New York. pp. 71-90
  • Üçkardeş F, Narinç D (2014) An application of modified Logistic and Gompertz growthmodels in Japanese guail. Indian Journal of Animal Sciences 84: 903–907.
  • Werner C, Wecke C, Lıebert F, Wicke M (2010) Increasing the incubation temperature between embryonic day 7 and 10 has no influence on the growth and slaughter characteristics as well as meat quality of broilers. Animal, 4: 810-816.
  • Yahav S, Hurwitz S (1996) Induction of thermotolerance in male broiler chickens by temperature conditioning at an early age. Poultry Science 75: 402–406.
  • Yahav S, Shinder D, Tanny J, Cohen S (2005) Sensible heat loss – the broilers paradox. World’s Poultry Science Journal 61: 419-435.
  • Yakupoğlu C, Atil H (2001) Comparison of growth curve models on broilers growth curve I: Parameters estimation. Online Journal Biology Science 1: 680-681.
There are 36 citations in total.

Details

Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Sezai Alkan

Özgür Birgül This is me

Publication Date December 26, 2016
Submission Date May 24, 2016
Published in Issue Year 2016 Volume: 29 Issue: 3

Cite

APA Alkan, S., & Birgül, Ö. (2016). Effects of high thermal manipulations during early and late embryogenesis on growth characteristics of broilers. Mediterranean Agricultural Sciences, 29(3), 149-154.
AMA Alkan S, Birgül Ö. Effects of high thermal manipulations during early and late embryogenesis on growth characteristics of broilers. Mediterranean Agricultural Sciences. December 2016;29(3):149-154.
Chicago Alkan, Sezai, and Özgür Birgül. “Effects of High Thermal Manipulations During Early and Late Embryogenesis on Growth Characteristics of Broilers”. Mediterranean Agricultural Sciences 29, no. 3 (December 2016): 149-54.
EndNote Alkan S, Birgül Ö (December 1, 2016) Effects of high thermal manipulations during early and late embryogenesis on growth characteristics of broilers. Mediterranean Agricultural Sciences 29 3 149–154.
IEEE S. Alkan and Ö. Birgül, “Effects of high thermal manipulations during early and late embryogenesis on growth characteristics of broilers”, Mediterranean Agricultural Sciences, vol. 29, no. 3, pp. 149–154, 2016.
ISNAD Alkan, Sezai - Birgül, Özgür. “Effects of High Thermal Manipulations During Early and Late Embryogenesis on Growth Characteristics of Broilers”. Mediterranean Agricultural Sciences 29/3 (December 2016), 149-154.
JAMA Alkan S, Birgül Ö. Effects of high thermal manipulations during early and late embryogenesis on growth characteristics of broilers. Mediterranean Agricultural Sciences. 2016;29:149–154.
MLA Alkan, Sezai and Özgür Birgül. “Effects of High Thermal Manipulations During Early and Late Embryogenesis on Growth Characteristics of Broilers”. Mediterranean Agricultural Sciences, vol. 29, no. 3, 2016, pp. 149-54.
Vancouver Alkan S, Birgül Ö. Effects of high thermal manipulations during early and late embryogenesis on growth characteristics of broilers. Mediterranean Agricultural Sciences. 2016;29(3):149-54.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.