Research Article
BibTex RIS Cite

Farklı özelliklerdeki topraklarda redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi

Year 2018, Volume: 31 Issue: 3, 301 - 309, 03.12.2018
https://doi.org/10.29136/mediterranean.409050

Abstract

Kış ayları boyunca
toprakların hemen hemen doygun şartlarda kalması redoks potansiyelini
düşürmekte bu da örnekleme zamanına bağlı olarak topraklarda farklı yarayışlı
element konsantrasyonlarına neden olmaktadır. Topraklara giren oksijen
miktarına bağlı olarak redoks reaksiyonlarında meydana gelen değişimler demir
(Fe) ve mangan (Mn) yarayışlılığını önemli ölçüde değiştirmektedir. Bu nedenle
bu çalışmada indirgen koşulların süresine bağlı olarak topraklardaki yarayışlı
Fe ve Mn miktarlarının nasıl değiştiği incelenmiştir. Bu amaçla özellikleri
farklı 15 yüzey toprağı (0-30 cm) 1:1 toprak su karışımıyla sağlanan indirgen
şartlarda sabit sıcaklıkta
(22±2 °C) 91
gün inkübasyona bırakılmıştır. İnkübasyonun 3, 7, 14, 21, 31, 45, 60, 91.
günlerinde pH, ORP, DTPA-Fe ve DTPA-Mn analizleri yapılmıştır. Sonuçlar redoks
potansiyelinin DTPA ile ekstrakte edilebilen yarayışlı Fe ve Mn
konsantrasyonunu önemli ölçüde etkileyerek değiştirdiği gözlemlenmiştir. Bu
değişim, inkübasyon süresine ve toprak özelliklerine bağlı olarak farklılıklar
göstermiştir. Sonuç olarak topraklarda yarayışlı Fe ve Mn konsantrasyonu
belirlenirken toprakların rutin analizleri içerisine ORP parametresinin de
ilave edilmesinin aynı arazinin farklı dönemlerindeki analiz sonuçlarının
karşılaştırılmasında faydalı olacağı düşünülmektedir.

References

  • Aydın A, Sezen Y (1995) Değişik Azotlu Gübrelerin Suya Doygun Koşullarda Urfa Yöresi Toprak Örneklerinin Fe, Mn, Zn ve Cu Elverişliliğine Etkisi. İlhan Akalan Toprak ve Çevre Sempozyumu, II, B146-155, Ankara.
  • Barik K, Kant C, Aydın A (2005) Daphan ve Pasinler Ovası toprak örneklerine suya doygun koşullarda farklı azotlu gübre uygulamalarının toprakların Fe, Mn, Zn ve Cu elverişliliğine etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 37(1): 9-15.
  • Berkman ET, Reise SP (2012) A Conceptual Guide to Statistics Using SPSS. SAGE Publications, Los Angeles, USA.
  • Bremner JM (1996) Nitrogen-total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (Eds.), Methods of Soil Analysis, Part 3 Chemical Methods. ASA/SSSA, Madison, WI, USA, pp. 1085-1022.
  • Condon AG, Richards RA (1992) Exploiting genetic variation in transpiration efficiency in wheat: An agronomic view. Ehleringer JR, Hall AE, Farquhar GD (Eds), Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego, California, USA, pp. 435- 450.
  • Datta SK (1981) Principles and Practices of Rice Production. Wiley Interscience, New York, U.S.A.
  • Dellwig O, Leipe T, Marz C, Glockzin M, Pollehne F, Schnetger B, Yakushev EV, Bottcher ME, Brumsack HJ (2010) A new particulate Mn-Fe-P-shuttle at the redox cline of anoxic basins. Geochimica Et Cosmochimica Acta 74: 7100-7115.
  • Fageria NK, Moraes OP, Vasconcelos MJ (2011) Yield and yield components of upland rice as influenced by nitrogen sources. Journal of Plant Nutrition 34: 361-370.
  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A. (ed.), Methods of Soil Analysis. Part 1. 2nd ed. ASA/SSSA, Madison, WI., USA. pp. 383-411.
  • Ghosh SN, Kar AK, Dhua SP (1976) Effect of sampling variation on Eh, pH and available P, Fe and Mn in submerged rice soil. Indian Society of Soil Science 24(1): 86-87.
  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (Eds.), Methods of Soil Analysis, Part Part 3 Chemical Methods. ASA/SSSA, Madison, WI, USA, pp. 869-920.
  • Landau S, Everitt BS (2004) A Handbook of Statistical Analyses Using SPSS. Chapman &Hall/CRC Press LLC, London, UK.
  • Latrille C, Elsass F, van Oort F, Denaix L (2001) Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France). Geoderma 100: 127-146.
  • Lindsay WL, Norvel WA (1978) Development of DTPA soil test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal 42(3): 421-28.
  • Lindsay WL (1979) Chemical Equilibria in Soils. JohnWiley & Sons, New York, USA.
  • Lindsay WL, Sadiq M (1983) Use of pe + pH to predict and interpret metal solubility relationships in soils. Science of Total Environment 28: 169-178.
  • Lindsay WL (2001) Chemical Equilibria in Soils. The Blackburn Press, USA.
  • Liu F, Colombo C, Adamo P, He JZ, Violante A (2002) Trace elements in manganese-iron nodules from a Chinese Alfisol. Soil Science Society of America Journal 66: 661–670.
  • Lowley DR (1991) Dissimilarity in Fe(III) and Mn(IV) reduction. Microbiological Reviews 55: 259-289.
  • Nasnodkar MR, Nayak GN (2017) Chemical speciation and bio-availability of selected trace metals in the mudflat core sediments of the tropical estuaries, India. Environmental Earth Sciences, 76: 727.
  • Nelson DW, Sommers LR (1996) Total carbon, organic carbon and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (Eds.), Methods of Soil Analysis, Part 3 Chemical Methods. ASA/SSSA, Madison, WI, USA, pp. 961-1010.
  • Ören S (2018) Toprakların redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta.
  • Patrick JWH, Reddy CN (1978) Chemical Changes in Rice Soils. In: IRRI, Ed., Soils and Rice, The International Rice Research Institute, Manila, pp. 361-379.
  • Patrick WH, Henderson RE (1981) Reduction and re-oxidation cycles of manganese and iron in flooded soil and in water solution. Soil Science Society of America Journal 45: 855-859.
  • Patrick WH, Gambrell RP, Faulkner SP (1996) Redox and measurement of soils In Sparks DL et al. (Eds). Methods of Soil Analysis, Part 3, Chemical Methods, Soil Society of America Book series No. 5, Soil Science Society of America, Madison, WI, pp. 1255-1273.
  • Ponnamperuma FN (1972) The chemistry of submerged soils. Advances in Agronomy 24: 29-96.
  • Ponnamperuma FN (1978) Electrochemical changes in submerged soils and the growth of rice. Soils and Rice. International Rice Research Institute, Los Bafios, Philippines, s. 421-441.
  • Rao MB, Venkateswalu J (1974) The Physico-chemical changes of the newly flooded soils. Indian Society of Soil Science 22(1): 13-18.
  • Shaheen SM, Rinklebe J (2014) Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228: 142-159.
  • Sogaard EG, Madsen HT (2013) Groundwater chemistry and treatment: Application to Danish waterworks. In: Elshorbagy W. (Ed.), Water Treatment. InTech, pp. 223-246.
  • Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Sumner ME (1996) Methods of Soil Analysis. Part 3-Chemical methods. Soil Science Society of America Inc., USA.
  • Suda A, Makino T (2016) Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 270: 68-75.
  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (Eds.), Methods of Soil Analysis, Part 3 Chemical Methods. ASA/SSSA, Madison, WI, USA. pp. 1201-1230.
  • Szymanski W, Skiba M (2013) Distribution, morphology, and chemical composition of Fe-Mn nodules in Albeluvisols of the Carpathian foothills, Poland. Pedosphere 23: 445-454.
  • Takai Y, Koyama T, Kamure T (1957) Microbial metobolism of paddy soils. Journal of Agricultural Chemical Society 31: 211–220.
  • Usta S (1995) Toprak Kimyası. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Yayın no: 1387, Ankara.

Effect of redox potential induced changes on Fe and Mn availability in soils with differing characteristics

Year 2018, Volume: 31 Issue: 3, 301 - 309, 03.12.2018
https://doi.org/10.29136/mediterranean.409050

Abstract

The water content near saturation during the winter times reduces the redox potential of soils this in fact cause changes in nutrient element concentration induced by sampling time. The availability of iron (Fe) and manganese (Mn) prone to very large variations depending on redox induced reactions upon depletion of oxygen diffusion into soils. Thus we aimed to investigate how available Fe and Mn concentrations are affected by saturation-time and soil properties. For this purpose total of 15 surface soil samples (0-30 cm) with differing physico-chemical properties were incubated at near saturation condition by mixing 1:1 soil: water and constant temperature (22±2°C) for 91 days. pH, oxidation reduction potential (ORP), DTPA-Fe and–Mn were measured on 3, 7, 14, 21, 31, 45, 60 and 91st days. Results indicated that redox potential had significant effects on DTPA extractable Fe and Mn concentrations. These changes were function of soil properties and incubation period. It can therefore be concluded that it is beneficial to include the ORP measurement into routine soil analyses parameters to better evaluate the available Fe and Mn concentration of the same field’s soil sampled at differing time or season.



References

  • Aydın A, Sezen Y (1995) Değişik Azotlu Gübrelerin Suya Doygun Koşullarda Urfa Yöresi Toprak Örneklerinin Fe, Mn, Zn ve Cu Elverişliliğine Etkisi. İlhan Akalan Toprak ve Çevre Sempozyumu, II, B146-155, Ankara.
  • Barik K, Kant C, Aydın A (2005) Daphan ve Pasinler Ovası toprak örneklerine suya doygun koşullarda farklı azotlu gübre uygulamalarının toprakların Fe, Mn, Zn ve Cu elverişliliğine etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 37(1): 9-15.
  • Berkman ET, Reise SP (2012) A Conceptual Guide to Statistics Using SPSS. SAGE Publications, Los Angeles, USA.
  • Bremner JM (1996) Nitrogen-total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (Eds.), Methods of Soil Analysis, Part 3 Chemical Methods. ASA/SSSA, Madison, WI, USA, pp. 1085-1022.
  • Condon AG, Richards RA (1992) Exploiting genetic variation in transpiration efficiency in wheat: An agronomic view. Ehleringer JR, Hall AE, Farquhar GD (Eds), Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego, California, USA, pp. 435- 450.
  • Datta SK (1981) Principles and Practices of Rice Production. Wiley Interscience, New York, U.S.A.
  • Dellwig O, Leipe T, Marz C, Glockzin M, Pollehne F, Schnetger B, Yakushev EV, Bottcher ME, Brumsack HJ (2010) A new particulate Mn-Fe-P-shuttle at the redox cline of anoxic basins. Geochimica Et Cosmochimica Acta 74: 7100-7115.
  • Fageria NK, Moraes OP, Vasconcelos MJ (2011) Yield and yield components of upland rice as influenced by nitrogen sources. Journal of Plant Nutrition 34: 361-370.
  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A. (ed.), Methods of Soil Analysis. Part 1. 2nd ed. ASA/SSSA, Madison, WI., USA. pp. 383-411.
  • Ghosh SN, Kar AK, Dhua SP (1976) Effect of sampling variation on Eh, pH and available P, Fe and Mn in submerged rice soil. Indian Society of Soil Science 24(1): 86-87.
  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (Eds.), Methods of Soil Analysis, Part Part 3 Chemical Methods. ASA/SSSA, Madison, WI, USA, pp. 869-920.
  • Landau S, Everitt BS (2004) A Handbook of Statistical Analyses Using SPSS. Chapman &Hall/CRC Press LLC, London, UK.
  • Latrille C, Elsass F, van Oort F, Denaix L (2001) Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France). Geoderma 100: 127-146.
  • Lindsay WL, Norvel WA (1978) Development of DTPA soil test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal 42(3): 421-28.
  • Lindsay WL (1979) Chemical Equilibria in Soils. JohnWiley & Sons, New York, USA.
  • Lindsay WL, Sadiq M (1983) Use of pe + pH to predict and interpret metal solubility relationships in soils. Science of Total Environment 28: 169-178.
  • Lindsay WL (2001) Chemical Equilibria in Soils. The Blackburn Press, USA.
  • Liu F, Colombo C, Adamo P, He JZ, Violante A (2002) Trace elements in manganese-iron nodules from a Chinese Alfisol. Soil Science Society of America Journal 66: 661–670.
  • Lowley DR (1991) Dissimilarity in Fe(III) and Mn(IV) reduction. Microbiological Reviews 55: 259-289.
  • Nasnodkar MR, Nayak GN (2017) Chemical speciation and bio-availability of selected trace metals in the mudflat core sediments of the tropical estuaries, India. Environmental Earth Sciences, 76: 727.
  • Nelson DW, Sommers LR (1996) Total carbon, organic carbon and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (Eds.), Methods of Soil Analysis, Part 3 Chemical Methods. ASA/SSSA, Madison, WI, USA, pp. 961-1010.
  • Ören S (2018) Toprakların redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta.
  • Patrick JWH, Reddy CN (1978) Chemical Changes in Rice Soils. In: IRRI, Ed., Soils and Rice, The International Rice Research Institute, Manila, pp. 361-379.
  • Patrick WH, Henderson RE (1981) Reduction and re-oxidation cycles of manganese and iron in flooded soil and in water solution. Soil Science Society of America Journal 45: 855-859.
  • Patrick WH, Gambrell RP, Faulkner SP (1996) Redox and measurement of soils In Sparks DL et al. (Eds). Methods of Soil Analysis, Part 3, Chemical Methods, Soil Society of America Book series No. 5, Soil Science Society of America, Madison, WI, pp. 1255-1273.
  • Ponnamperuma FN (1972) The chemistry of submerged soils. Advances in Agronomy 24: 29-96.
  • Ponnamperuma FN (1978) Electrochemical changes in submerged soils and the growth of rice. Soils and Rice. International Rice Research Institute, Los Bafios, Philippines, s. 421-441.
  • Rao MB, Venkateswalu J (1974) The Physico-chemical changes of the newly flooded soils. Indian Society of Soil Science 22(1): 13-18.
  • Shaheen SM, Rinklebe J (2014) Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228: 142-159.
  • Sogaard EG, Madsen HT (2013) Groundwater chemistry and treatment: Application to Danish waterworks. In: Elshorbagy W. (Ed.), Water Treatment. InTech, pp. 223-246.
  • Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Sumner ME (1996) Methods of Soil Analysis. Part 3-Chemical methods. Soil Science Society of America Inc., USA.
  • Suda A, Makino T (2016) Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 270: 68-75.
  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (Eds.), Methods of Soil Analysis, Part 3 Chemical Methods. ASA/SSSA, Madison, WI, USA. pp. 1201-1230.
  • Szymanski W, Skiba M (2013) Distribution, morphology, and chemical composition of Fe-Mn nodules in Albeluvisols of the Carpathian foothills, Poland. Pedosphere 23: 445-454.
  • Takai Y, Koyama T, Kamure T (1957) Microbial metobolism of paddy soils. Journal of Agricultural Chemical Society 31: 211–220.
  • Usta S (1995) Toprak Kimyası. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Yayın no: 1387, Ankara.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Süleyman Ören This is me

Veli Uygur This is me

Enise Sukuşu This is me

Publication Date December 3, 2018
Submission Date March 23, 2018
Published in Issue Year 2018 Volume: 31 Issue: 3

Cite

APA Ören, S., Uygur, V., & Sukuşu, E. (2018). Farklı özelliklerdeki topraklarda redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi. Mediterranean Agricultural Sciences, 31(3), 301-309. https://doi.org/10.29136/mediterranean.409050
AMA Ören S, Uygur V, Sukuşu E. Farklı özelliklerdeki topraklarda redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi. Mediterranean Agricultural Sciences. December 2018;31(3):301-309. doi:10.29136/mediterranean.409050
Chicago Ören, Süleyman, Veli Uygur, and Enise Sukuşu. “Farklı özelliklerdeki Topraklarda Redoks Potansiyelindeki değişimlerin Fe Ve Mn yarayışlılığına Etkisi”. Mediterranean Agricultural Sciences 31, no. 3 (December 2018): 301-9. https://doi.org/10.29136/mediterranean.409050.
EndNote Ören S, Uygur V, Sukuşu E (December 1, 2018) Farklı özelliklerdeki topraklarda redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi. Mediterranean Agricultural Sciences 31 3 301–309.
IEEE S. Ören, V. Uygur, and E. Sukuşu, “Farklı özelliklerdeki topraklarda redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi”, Mediterranean Agricultural Sciences, vol. 31, no. 3, pp. 301–309, 2018, doi: 10.29136/mediterranean.409050.
ISNAD Ören, Süleyman et al. “Farklı özelliklerdeki Topraklarda Redoks Potansiyelindeki değişimlerin Fe Ve Mn yarayışlılığına Etkisi”. Mediterranean Agricultural Sciences 31/3 (December 2018), 301-309. https://doi.org/10.29136/mediterranean.409050.
JAMA Ören S, Uygur V, Sukuşu E. Farklı özelliklerdeki topraklarda redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi. Mediterranean Agricultural Sciences. 2018;31:301–309.
MLA Ören, Süleyman et al. “Farklı özelliklerdeki Topraklarda Redoks Potansiyelindeki değişimlerin Fe Ve Mn yarayışlılığına Etkisi”. Mediterranean Agricultural Sciences, vol. 31, no. 3, 2018, pp. 301-9, doi:10.29136/mediterranean.409050.
Vancouver Ören S, Uygur V, Sukuşu E. Farklı özelliklerdeki topraklarda redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi. Mediterranean Agricultural Sciences. 2018;31(3):301-9.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.