Research Article
BibTex RIS Cite

Pirinanın farklı nem içeriklerinde peletlenmesi işleminin peletlerin fiziksel özellikleri üzerine etkileri

Year 2021, Volume: 34 Issue: 1, 55 - 61, 01.04.2021
https://doi.org/10.29136/mediterranean.833875

Abstract

Bu çalışmada, zeytinyağı üretimi sırasında yan ürün olarak ortaya çıkan pirina üç farklı nem içeriğinde (%14, %17 ve %20) peletlenmiş ve farklı nem içeriklerinin peletlerin fiziksel kalite değerleri üzerine etkisi araştırılmıştır. Nem içeriği değişkenine bağlı olarak pelet üretim koşulları ile ilgili üretim kapasitesi ve özgül enerji tüketimi değerleri belirlenmiştir. Pelet fiziksel özellikleriyle ilgili nem içeriği, parça yoğunluğu, yığın yoğunluğu, dayanıklılık direnci ve sıkıştırma direnci testleri yapılmıştır. Çalışma sonunda en yüksek üretim kapasitesi ve en düşük özgül enerji tüketimi sırasıyla 225.59 kg h-1 ve 45.13 kWh ton-1 ile %20 nem içeriğine sahip pirinada elde edilmiştir. Yüksek nem içeriğinde pelet üretiminin daha kolay gerçekleştiği ve daha az enerji gerektirdiği belirlenmiştir. Peletleme işleminde nem düzeyi artışının, parça yoğunluğu ve yığın yoğunluğu değişimine etkisi istatistiksel açıdan önemsiz bulunmuştur. Pelet dayanıklılık direnci peletleme neminin artmasıyla artış göstermiş, en yüksek dayanıklılık direnci %20 nem içeriğindeki peletleme işleminde %70 olarak hesaplanmıştır. Elde edilen peletlerin nem içeriği, yığın yoğunluğu ve dayanıklılık direnci değerleri EnPlus pelet standartlarını karşılamamaktadır. Her üç nem içeriğinde üretilen peletlerin dayanıklı yapıda olmadığı saptanmıştır. Pirina içerisinde bulunan zeytin çekirdeği parçalarının, pirinanın pelet formasyonu kazanması ve dayanıklı yapıda kalmasını engellediği sonucuna varılmıştır.

References

  • Abedi A, Cheng H, Dalai AK (2018) Effects of natural additives on the properties of sawdust fuel pellets. Energy and Fuels 32: 1863-1873.
  • Agar DA, Rudolfsson M, Kalén G, Campargue M, Da Silva Perez D, Larsson SH (2018) A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology 180: 47-55.
  • Akdeniz RC, Shishvan SH (2015) The requirement for new biomass pelletizing test device. Agricultural Engineering 2: 25-34.
  • Al-Widyan MI, Al-Jalil HF, Abu-Zreig MM, Abu-Hamdeh NH (2002) Physical durability and stability of olive cake briquettes. Canadian Biosystems Engineering / Le Genie des biosystems au Canada 44: 41-45.
  • Arzola N, Gómez A, Rincón S (2012) The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters. Ingenieria e Investigacion 32: 24-29.
  • Arzola NA, Gómez A, Rincón S (2014) Experimental study of the mechanical and thermal behavior of pellets produced from oil palm biomass blends. Global Nest Journal 16: 179-187.
  • ASAE (2001) S269.4: In cubes, pellets, and crumbles-definitions and methods for determining density, durability, and moisture content. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
  • ASAE S319.3 (2003) Methods for determining and expressing fineness of feed materials by sieving. 2008:S319.2. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
  • ASTM E871-82 (2019) Standard test method for moisture analysis of particulate wood fuels. American Society for Testing and Materials, West Conshohocken, PA (United States).
  • Bilgin S, Yılmaz H, Koçer A, Acar M, Dok M (2014) Ayçiçeği saplarının konik helezon tip briket makinesinde briketlenmesi Briquetting of sunflower stalks in conical screw type briquette machine. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 27: 91-97.
  • Bilgin S, Karayel D, Yılmaz H (2015a) Palmiye Budama Artıklarının Briketlenmesi. 29. Tarımsal Mekanizasyon ve Enerji Kongresi, Diyarbakır, s. 480-486.
  • Bilgin S, Yılmaz H, Koçer A, Acar M, Dok M (2015b) Fındık Zurufunun Peletlenmesi ve Pelet Fiziksel Özelliklerinin Belirlenmesi. Tarım Makianaları Bilim Dergisi 11: 265-273.
  • Calderón C, Colla M, Jossart JM, Hemeleers N, Cancian G, Aveni N, Caferri C (2019) BioEnergy Europe Statiscital Report. Place du Champ de Mars 2A 1050 Brussels.
  • Carroll JP, Finnan J (2012) Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering 112: 151-159.
  • Cheng J, Zhou F, Si T, Zhou J, Cen K (2018) Mechanical strength and combustion properties of biomass pellets prepared with coal tar residue as a binder. Fuel Processing Technology 179: 229-237.
  • Coşkun MB, Yalçin I, Özarslan C (2006) Physical properties of sweet corn seed (Zea mays saccharata Sturt.). Journal of Food Engineering 74: 523-528.
  • EN 15103 (2009) Solid biofuels – Determination of bulk density. CEN/TS. London, EN: CEN.
  • EN 15210-1 (2009) Solid biofuels - Determination of mechanical durability of pellets and briquettes - Part 1: Pellets. CEN/TS. London, EN: CEN.
  • ENplus (2015) Pellet Quality Requirements. Place du Champ de Mars 2 1050 Brussels, Belgium.
  • Filbakk T, Jirjis R, Nurmi J, Høibø O (2011) The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy 35: 3342-3349.
  • Garcia-Maraver A (2015) Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Processing Technology 129: 1-7.
  • González WA, López D, Pérez JF (2020) Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders. Renewable Energy 147: 1139-1150.
  • Hocaoglu S, Baştürk İ, Haksevenler BH, Aydöner C (2017) Türkiye’deki Zeytinyağı İşletmelerinin Üretim Süreçleri ve Kapasite Kullanımları Açısından Değerlendirilmesi. Turkish Journal of Agriculture - Food Science and Technology 5: 724.
  • Huang Y, Finell M, Larsson S, Wang X, Zhang J, Wei R, Liu L (2017) Biofuel pellets made at low moisture content – Influence of water in the binding mechanism of densified biomass. Biomass and Bioenergy 98: 8-14.
  • Jiang L, Yuan X, Xiao Z, Liang J, Li H, Cao L, Wang H, Chen X, Zeng G (2016) A comparative study of biomass pellet and biomass-sludge mixed pellet: Energy input and pellet properties. Energy Conversion and Management 126: 509-515.
  • Kirsten C, Lenz V, Schröder HW, Repke JU (2016) Hay pellets - The influence of particle size reduction on their physical-mechanical quality and energy demand during production. Fuel Processing Technology 148: 163-174.
  • Korkut S, Mart O, Kuyruk E, Teknik K, Analizi E (2016) Çanakkale ilinde zeytin üretimi artık potansiyelinin belirlenmesi ve değerlendirme olanaklarının araştırılması. Tarım Makinaları Bilimi Dergisi 12: 103-111.
  • Manouchehrinejad M, Mani S (2018) Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products. Biomass and Bioenergy 118: 93-104.
  • Mostafa ME, Hu S, Wang Y, Su S, Hu X, Elsayed SA, Xiang J (2019) The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable and Sustainable Energy Reviews 105: 332-348.
  • Ruiz Celma A, Cuadros F, López-Rodríguez F (2012) Characterization of pellets from industrial tomato residues. Food and Bioproducts Processing 90: 700-706.
  • Serrano C, Monedero E, Lapuerta M, Portero H (2011) Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology 92: 699-706.
  • Stelte W, Nielsen NPK, Hansen HO, Dahl J, Shang L, Sanadi AR (2013) Reprint of: Pelletizing properties of torrefied wheat straw. Biomass and Bioenergy 53: 105-112.
  • Talero Rojas GF, Rincón Prat SL, Gonzalez Hassig A (2016) Use of Colombian oil palm wastes for pellets production: reduction of the process energy consumption by modifying moisture content. WasteEng - 6th International Conference on Engineering for Waste and Biomass Valorisation, Albi, France.
  • TÜİK (2020) Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr Erişim 5 Ocak 2021.
  • Yıldırım R, Tunalıoğlu R (2016) Aydın’da Karasu Sorunu ve Zeytinyağı İşletmelerinin Çözüme Yönelik Tercihlerinin İncelenmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 13: 39-39.
  • Yılmaz H, Topakcı M, Karayel D, Çanakcı M (2020) Comparison of the physical properties of cotton and sesame stalk pellets produced at different moisture contents and combustion of the finest pellets. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi: 10.1080/15567036.2020.1850931.
  • Zawiślak K, Sobczak P, Kraszkiewicz A, Niedziółka I, Parafiniuk S, Kuna-Broniowska I, Tanaś W, Żukiewicz-Sobczak W, Obidziński S (2020) The use of lignocellulosic waste in the production of pellets for energy purposes. Renewable Energy 145: 997-1003.
  • Zvicevičius E, Raila A, Čiplienė A, Černiauskienė Ž, Kadžiulienė Ž, Tilvikienė V (2018) Effects of moisture and pressure on densification process of raw material from Artemisia dubia Wall. Renewable Energy 119: 185-192.

The effects of pelletizing moisture on pellet physical properties of olive cake pellets

Year 2021, Volume: 34 Issue: 1, 55 - 61, 01.04.2021
https://doi.org/10.29136/mediterranean.833875

Abstract

In the study, olive cake, which was obtained during olive oil production, was pelleted at three different moisture contents (14%, 17% and 20%). Depending on the moisture content variable, the production capacity and specific energy consumption values related to the pellet production conditions were determined. Moisture content, particle density, bulk density, specific compression resistance and pellet durability index tests were carried out regarding the pellet physical properties. At the end of the study, the highest production capacity and the lowest specific energy consumption were obtained for the raw material with 20% moisture content with 225.59 kg h-1 and 45.13 kWh ton-1, respectively. It has been observed that pellet production with high moisture content is easier and requires less energy. The effect of the increase of pelletizing moisture on the change of particle density and bulk density was found to be statistically insignificant (p<0.05). Pellet durability increased with the increase of pelleting moisture, and the highest pellet durability index was calculated as 70% in the pelleting process at 20% moisture content. The moisture content, bulk density and pellet durability index values of the pellets obtained do not meet the EnPlus pellet standards. It has been observed that the pellets produced in all three moisture content are quite unstable and weak form. It was concluded that the olive seed pieces in the olive cake prevent the gaining pellet formation and having durable structure.

References

  • Abedi A, Cheng H, Dalai AK (2018) Effects of natural additives on the properties of sawdust fuel pellets. Energy and Fuels 32: 1863-1873.
  • Agar DA, Rudolfsson M, Kalén G, Campargue M, Da Silva Perez D, Larsson SH (2018) A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology 180: 47-55.
  • Akdeniz RC, Shishvan SH (2015) The requirement for new biomass pelletizing test device. Agricultural Engineering 2: 25-34.
  • Al-Widyan MI, Al-Jalil HF, Abu-Zreig MM, Abu-Hamdeh NH (2002) Physical durability and stability of olive cake briquettes. Canadian Biosystems Engineering / Le Genie des biosystems au Canada 44: 41-45.
  • Arzola N, Gómez A, Rincón S (2012) The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters. Ingenieria e Investigacion 32: 24-29.
  • Arzola NA, Gómez A, Rincón S (2014) Experimental study of the mechanical and thermal behavior of pellets produced from oil palm biomass blends. Global Nest Journal 16: 179-187.
  • ASAE (2001) S269.4: In cubes, pellets, and crumbles-definitions and methods for determining density, durability, and moisture content. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
  • ASAE S319.3 (2003) Methods for determining and expressing fineness of feed materials by sieving. 2008:S319.2. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
  • ASTM E871-82 (2019) Standard test method for moisture analysis of particulate wood fuels. American Society for Testing and Materials, West Conshohocken, PA (United States).
  • Bilgin S, Yılmaz H, Koçer A, Acar M, Dok M (2014) Ayçiçeği saplarının konik helezon tip briket makinesinde briketlenmesi Briquetting of sunflower stalks in conical screw type briquette machine. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 27: 91-97.
  • Bilgin S, Karayel D, Yılmaz H (2015a) Palmiye Budama Artıklarının Briketlenmesi. 29. Tarımsal Mekanizasyon ve Enerji Kongresi, Diyarbakır, s. 480-486.
  • Bilgin S, Yılmaz H, Koçer A, Acar M, Dok M (2015b) Fındık Zurufunun Peletlenmesi ve Pelet Fiziksel Özelliklerinin Belirlenmesi. Tarım Makianaları Bilim Dergisi 11: 265-273.
  • Calderón C, Colla M, Jossart JM, Hemeleers N, Cancian G, Aveni N, Caferri C (2019) BioEnergy Europe Statiscital Report. Place du Champ de Mars 2A 1050 Brussels.
  • Carroll JP, Finnan J (2012) Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering 112: 151-159.
  • Cheng J, Zhou F, Si T, Zhou J, Cen K (2018) Mechanical strength and combustion properties of biomass pellets prepared with coal tar residue as a binder. Fuel Processing Technology 179: 229-237.
  • Coşkun MB, Yalçin I, Özarslan C (2006) Physical properties of sweet corn seed (Zea mays saccharata Sturt.). Journal of Food Engineering 74: 523-528.
  • EN 15103 (2009) Solid biofuels – Determination of bulk density. CEN/TS. London, EN: CEN.
  • EN 15210-1 (2009) Solid biofuels - Determination of mechanical durability of pellets and briquettes - Part 1: Pellets. CEN/TS. London, EN: CEN.
  • ENplus (2015) Pellet Quality Requirements. Place du Champ de Mars 2 1050 Brussels, Belgium.
  • Filbakk T, Jirjis R, Nurmi J, Høibø O (2011) The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy 35: 3342-3349.
  • Garcia-Maraver A (2015) Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Processing Technology 129: 1-7.
  • González WA, López D, Pérez JF (2020) Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders. Renewable Energy 147: 1139-1150.
  • Hocaoglu S, Baştürk İ, Haksevenler BH, Aydöner C (2017) Türkiye’deki Zeytinyağı İşletmelerinin Üretim Süreçleri ve Kapasite Kullanımları Açısından Değerlendirilmesi. Turkish Journal of Agriculture - Food Science and Technology 5: 724.
  • Huang Y, Finell M, Larsson S, Wang X, Zhang J, Wei R, Liu L (2017) Biofuel pellets made at low moisture content – Influence of water in the binding mechanism of densified biomass. Biomass and Bioenergy 98: 8-14.
  • Jiang L, Yuan X, Xiao Z, Liang J, Li H, Cao L, Wang H, Chen X, Zeng G (2016) A comparative study of biomass pellet and biomass-sludge mixed pellet: Energy input and pellet properties. Energy Conversion and Management 126: 509-515.
  • Kirsten C, Lenz V, Schröder HW, Repke JU (2016) Hay pellets - The influence of particle size reduction on their physical-mechanical quality and energy demand during production. Fuel Processing Technology 148: 163-174.
  • Korkut S, Mart O, Kuyruk E, Teknik K, Analizi E (2016) Çanakkale ilinde zeytin üretimi artık potansiyelinin belirlenmesi ve değerlendirme olanaklarının araştırılması. Tarım Makinaları Bilimi Dergisi 12: 103-111.
  • Manouchehrinejad M, Mani S (2018) Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products. Biomass and Bioenergy 118: 93-104.
  • Mostafa ME, Hu S, Wang Y, Su S, Hu X, Elsayed SA, Xiang J (2019) The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable and Sustainable Energy Reviews 105: 332-348.
  • Ruiz Celma A, Cuadros F, López-Rodríguez F (2012) Characterization of pellets from industrial tomato residues. Food and Bioproducts Processing 90: 700-706.
  • Serrano C, Monedero E, Lapuerta M, Portero H (2011) Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology 92: 699-706.
  • Stelte W, Nielsen NPK, Hansen HO, Dahl J, Shang L, Sanadi AR (2013) Reprint of: Pelletizing properties of torrefied wheat straw. Biomass and Bioenergy 53: 105-112.
  • Talero Rojas GF, Rincón Prat SL, Gonzalez Hassig A (2016) Use of Colombian oil palm wastes for pellets production: reduction of the process energy consumption by modifying moisture content. WasteEng - 6th International Conference on Engineering for Waste and Biomass Valorisation, Albi, France.
  • TÜİK (2020) Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr Erişim 5 Ocak 2021.
  • Yıldırım R, Tunalıoğlu R (2016) Aydın’da Karasu Sorunu ve Zeytinyağı İşletmelerinin Çözüme Yönelik Tercihlerinin İncelenmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 13: 39-39.
  • Yılmaz H, Topakcı M, Karayel D, Çanakcı M (2020) Comparison of the physical properties of cotton and sesame stalk pellets produced at different moisture contents and combustion of the finest pellets. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi: 10.1080/15567036.2020.1850931.
  • Zawiślak K, Sobczak P, Kraszkiewicz A, Niedziółka I, Parafiniuk S, Kuna-Broniowska I, Tanaś W, Żukiewicz-Sobczak W, Obidziński S (2020) The use of lignocellulosic waste in the production of pellets for energy purposes. Renewable Energy 145: 997-1003.
  • Zvicevičius E, Raila A, Čiplienė A, Černiauskienė Ž, Kadžiulienė Ž, Tilvikienė V (2018) Effects of moisture and pressure on densification process of raw material from Artemisia dubia Wall. Renewable Energy 119: 185-192.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Hasan Yılmaz 0000-0003-3791-6437

Mehmet Topakcı 0000-0002-5049-9511

Davut Karayel 0000-0002-6789-2459

Murad Çanakcı 0000-0002-1985-8387

Publication Date April 1, 2021
Submission Date December 28, 2020
Published in Issue Year 2021 Volume: 34 Issue: 1

Cite

APA Yılmaz, H., Topakcı, M., Karayel, D., Çanakcı, M. (2021). Pirinanın farklı nem içeriklerinde peletlenmesi işleminin peletlerin fiziksel özellikleri üzerine etkileri. Mediterranean Agricultural Sciences, 34(1), 55-61. https://doi.org/10.29136/mediterranean.833875
AMA Yılmaz H, Topakcı M, Karayel D, Çanakcı M. Pirinanın farklı nem içeriklerinde peletlenmesi işleminin peletlerin fiziksel özellikleri üzerine etkileri. Mediterranean Agricultural Sciences. April 2021;34(1):55-61. doi:10.29136/mediterranean.833875
Chicago Yılmaz, Hasan, Mehmet Topakcı, Davut Karayel, and Murad Çanakcı. “Pirinanın Farklı Nem içeriklerinde Peletlenmesi işleminin Peletlerin Fiziksel özellikleri üzerine Etkileri”. Mediterranean Agricultural Sciences 34, no. 1 (April 2021): 55-61. https://doi.org/10.29136/mediterranean.833875.
EndNote Yılmaz H, Topakcı M, Karayel D, Çanakcı M (April 1, 2021) Pirinanın farklı nem içeriklerinde peletlenmesi işleminin peletlerin fiziksel özellikleri üzerine etkileri. Mediterranean Agricultural Sciences 34 1 55–61.
IEEE H. Yılmaz, M. Topakcı, D. Karayel, and M. Çanakcı, “Pirinanın farklı nem içeriklerinde peletlenmesi işleminin peletlerin fiziksel özellikleri üzerine etkileri”, Mediterranean Agricultural Sciences, vol. 34, no. 1, pp. 55–61, 2021, doi: 10.29136/mediterranean.833875.
ISNAD Yılmaz, Hasan et al. “Pirinanın Farklı Nem içeriklerinde Peletlenmesi işleminin Peletlerin Fiziksel özellikleri üzerine Etkileri”. Mediterranean Agricultural Sciences 34/1 (April 2021), 55-61. https://doi.org/10.29136/mediterranean.833875.
JAMA Yılmaz H, Topakcı M, Karayel D, Çanakcı M. Pirinanın farklı nem içeriklerinde peletlenmesi işleminin peletlerin fiziksel özellikleri üzerine etkileri. Mediterranean Agricultural Sciences. 2021;34:55–61.
MLA Yılmaz, Hasan et al. “Pirinanın Farklı Nem içeriklerinde Peletlenmesi işleminin Peletlerin Fiziksel özellikleri üzerine Etkileri”. Mediterranean Agricultural Sciences, vol. 34, no. 1, 2021, pp. 55-61, doi:10.29136/mediterranean.833875.
Vancouver Yılmaz H, Topakcı M, Karayel D, Çanakcı M. Pirinanın farklı nem içeriklerinde peletlenmesi işleminin peletlerin fiziksel özellikleri üzerine etkileri. Mediterranean Agricultural Sciences. 2021;34(1):55-61.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.