[1] Hudzik, H., “The problems of separability, duality, reflexivity and of comparison for generalized Orlicz–Sobolev spaces ”, Commentationes Mathematicae, 21, 315–324, 1979.
[2] Musielak, J., Orlicz spaces and modular spaces, Springer, Berlin Heidelberg New York, 1983.
[3] Orlicz, W., “Über konjugierte Exponentenfolgen”, Studia Mathematica, 3, 200–212, 1931.
[4] Růžička, M., Elektrorheological fluids: modeling and mathematical theory, Springer-Verlag, Berlin, 2000.
[5] Acerbi, E., Mingione, G., “Regularity results for stationary electro-rheological fluids”, Archive for Rational Mechanics and Analysis, 164(3), 213-259, 2002.
[6] Aboulaich, R., et al., “New diffusion models in image processing”, Computers & Mathematics with Applications, 56, 4, 874-882, 2008.
[7] Chen, Y., et al., “Variable exponent, linear growth functionals in image restoration” SIAM journal on Applied Mathematics, 66, 4, 1383-1406, 2006.
[8] Zhikov , V.V., “Meyer-type estimates for solving the nonlinear Stokes system”, Differential Equations, 33, 1, 108–115, 1997.
[9] Amaziane, B., et al., “Nonlinear flow through double porosity media in variable exponent Sobolev spaces”, Nonlinear Analysis: Real World Applications, 10, 4, 2521-2530, 2009.
In this study,atfirst we provide a general overview of L^p(x)(Ω) spaces, also known as variable exponent
Lebesgue spaces. They are a generalization of classical Lebesgue spaces L^pin the sense that
constant exponent replaced by a measurable function.Then, based on classical Lebesgue spaceapproach
we prove a reverse of Hölder inequality in L^p(x)(Ω).Therefore,our proof in variable
exponent Lebesgue space is verysimilar to thatin classical Lebesgue space.
[1] Hudzik, H., “The problems of separability, duality, reflexivity and of comparison for generalized Orlicz–Sobolev spaces ”, Commentationes Mathematicae, 21, 315–324, 1979.
[2] Musielak, J., Orlicz spaces and modular spaces, Springer, Berlin Heidelberg New York, 1983.
[3] Orlicz, W., “Über konjugierte Exponentenfolgen”, Studia Mathematica, 3, 200–212, 1931.
[4] Růžička, M., Elektrorheological fluids: modeling and mathematical theory, Springer-Verlag, Berlin, 2000.
[5] Acerbi, E., Mingione, G., “Regularity results for stationary electro-rheological fluids”, Archive for Rational Mechanics and Analysis, 164(3), 213-259, 2002.
[6] Aboulaich, R., et al., “New diffusion models in image processing”, Computers & Mathematics with Applications, 56, 4, 874-882, 2008.
[7] Chen, Y., et al., “Variable exponent, linear growth functionals in image restoration” SIAM journal on Applied Mathematics, 66, 4, 1383-1406, 2006.
[8] Zhikov , V.V., “Meyer-type estimates for solving the nonlinear Stokes system”, Differential Equations, 33, 1, 108–115, 1997.
[9] Amaziane, B., et al., “Nonlinear flow through double porosity media in variable exponent Sobolev spaces”, Nonlinear Analysis: Real World Applications, 10, 4, 2521-2530, 2009.