Research Article
BibTex RIS Cite

CHARACTERIZATION OF CU2MNSNS4 THIN FILMS FABRICATED BY SPIN COATING

Year 2022, Volume: 8 Issue: 1, 34 - 45, 17.06.2022
https://doi.org/10.51477/mejs.1095220

Abstract

Cu2MnSnS4 (CMTS) thin films are affected by several parameters related to different annealing including sulphurization flux rate. In this paper, nontoxic CMTS samples were fabricated onto glass substrate by a spin-coating to investigate the effect of various sulphurization flux rate on the crystal structure, tophological and optical properties by X-Ray diffraction, scanning electron microscopy, atomic force microscopy and ultraviolet–visible spectrophotometer, respectively The crystal properties of CMTS thin films are radically changed depending on increase of sulphurization flux rate annealed at 550 °C for 90 minutes. The XRD pattern give CMTS peaks at (112) plane for two samples which correspond to structure of kesterite crystal. The SEM images of films show a decrease in the particle size relate to increase flux rate of sulphurization. The energy band gap for the CMTS films are found to be 1.22 and 1.15 eV for 30 sccm and 40 sccm sulphurization flux rate annealed at 550 °C, respectively.

Thanks

We thank Dicle University Science and Technology Application and Research Center (DUBTAM) for their support to our study.

References

  • [1] A. Rockett, R. Birkmire, CuInSe2 for photovoltaic applications, Journal of Applied Physics 70(7) R81-R97, 1991.
  • [2] C.-Y. Su, W.-H. Ho, H.-C. Lin, C.-Y. Nieh, S.-C. Liang, The effects of the morphology on the CIGS thin films prepared by CuInGa single precursor, Solar energy materials and solar cells 95(1) 261-263, 2011.
  • [3] J. Britt, C. Ferekides, Thin‐film CdS/CdTe solar cell with 15.8% efficiency, Applied physics letters 62(22), 2851-2852, 1993.
  • [4] S. Kahraman, S. Çetinkaya, M. Podlogar, S. Bernik, H. Çetinkara, H. Güder, Effects of the sulphurization temperature on sol gel-processed Cu2ZnSnS4 thin films, Ceramics International 39(8), 9285-9292, 2013.
  • [5] X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells, Solar Energy 77(6) 803-814, 2004.
  • [6] J. K. Larsen, F. Larsson, T. Törndahl, N. Saini, L. Riekehr, Y. Ren, C. Platzer‐Björkman, Cadmium free Cu2ZnSnS4 solar cells with 9.7% efficiency, Advanced Energy Materials 9(21), 1900439, 2019.
  • [7] J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, K.-H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process, Solar energy materials and solar cells 75(1-2), 155-162, 2003.
  • [8] H. Guan, X. Wang, Y. Huang, Optical, photocatalytic and thermoelectric properties of Cu2MeSnS4 (Me= Mn 2, Fe 2, Co 2) nanocrystals via microwave-assisted solvothermal method, Chalcogenide Letters 15(9), 435-440, 2018.
  • [9] H. Guan, H. Hou, M. Li, J. Cui, Photocatalytic and thermoelectric properties of Cu2MnSnS4 nanoparticles synthesized via solvothermal method, Materials Letters 188, 319-322, 2017.
  • [10] X. Li, Z. Hou, S. Gao, Y. Zeng, J. Ao, Z. Zhou, Y. Zhang, B. Da, W. Liu, Y. Sun, Y. Zhang, Efficient optimization of the performance of Mn2+-doped kesterite solar cell: Machine learning aided synthesis of high efficient Cu2(Mn, Zn)Sn(S, Se)4 Solar Cells, Solar RRL 2(12), 1800198, 2018.
  • [11] J. Yu, H. Deng, Q. Zhang, J. Tao, L. Sun, P. Yang, J. Chu, The role of sulfurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics, Materials Letters 233, 111-114, 2018.
  • [12] K. Rudisch, W.F. Espinosa‐García, J.M. Osorio‐Guillén, C.M. Araujo, C. Platzer‐Björkman, J.J. Scragg, Structural and electronic properties of Cu2MnSnS4 from experiment and First‐Principles calculations, Physica status solidi (b) 256(7), 1800743, 2019.
  • [13] X. Liang, P. Guo, G. Wang, R. Deng, D. Pan, X. Wei, Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure, RSC Advances 2(12), 5044-5046, 2012.
  • [14] Y. Cui, R. Deng, G. Wang, D. Pan, A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M= Co2+, Fe2+, Ni2+, Mn2+) nanocrystals, Journal of Materials Chemistry 22(43), 23136-23140, 2012
  • [15] M. Quintero, E. Moreno, S. Alvarez, J. Marquina, C. Rincón, E. Quintero, P. Grima, J.-A. Heano, M.A. Macías, Lattice parameter values and phase transitions for the Cu2-II-IV-S4 (Se4)(II= Mn, Fe, Co; IV= Si, Ge, Sn) magnetic semiconductor compounds, Rev. LatinAm. Metal. Mater. 34(1), 2014.
  • [16] T.K. Todorov, K.B. Reuter, D.B. Mitzi, High‐efficiency solar cell with earth‐abundant liquid‐processed absorber, Advanced Materials 22(20), 156-159, 2010.
  • [17] Y. Zou, X. Su, J. Jiang, Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S, Journal of the American Chemical Society 135(49), 18377-18384, 2013.
  • [18] P.K. Sarswat, M. Snure, M.L. Free, A. Tiwari, CZTS thin films on transparent conducting electrodes by electrochemical technique, Thin Solid Films 520(6), 1694-1697, 2012.
  • [19] K. Tanaka, N. Moritake, H. Uchiki, Preparation of Cu2ZnSnS4 thin films by sulphurizing sol–gel deposited precursors, Solar energy materials and solar cells 91(13), 1199-1201, 2007.
  • [20] S. Vanalakar, G. Agawane, S. Shin, M. Suryawanshi, K. Gurav, K. Jeon, P. Patil, C. Jeong, J. Kim, J. Kim, A review on pulsed laser deposited CZTS thin films for solar cell applications, Journal of Alloys and Compounds 619, 109-121, 2015.
  • [21] Y. Lu, S. Wang, Z. Li, Z. Jiang, M. Yang, Q. Li, Effects of sputtering period on the performance of Cu2ZnSnS4 solar cells, Physica B: Condensed Matter 507, 35-40, 2017.
  • [22] A. Tombak, Y.S. Ocak, M.F. Genişel, T. Kilicoglu, Electrical and optical properties of Cu2ZnSnS4 grown by a thermal co-evaporation method and its diode application, Materials Science in Semiconductor Processing 28, 98-102, 2014.
  • [23] M.Z. Ansari, N. Khare, Structural and optical properties of CZTS thin films deposited by ultrasonically assisted chemical vapour deposition, Journal of Physics D: Applied Physics 47(18), 185101, 2014.
  • [24] B. Liu, J. Guo, R. Hao, L. Wang, K. Gu, S. Sun, A. Aierken, Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell, Solar Energy 201, 219-226, 2020.
  • [25] K. Maeda, K. Tanaka, Y. Nakano, H. Uchiki, Annealing temperature dependence of properties of Cu2ZnSnS4 thin films prepared by sol–gel sulfurization method. Japanese Journal of Applied Physics 50(5S2), 05FB08, 2011.
  • [26] E. Waluś, M. Manecki, G. Cios, T. Tokarski, Effect of a sulfur precursor on the hydrothermal synthesis of Cu2MnSnS4, Materials 14(13), 3457, 2021.
  • [27] G. Yang, X. Zhai, Y. Li, B. Yao, Z. Ding, R. Deng, H. Zhao, L. Zhang, Z. Zhang, Synthesis and characterizations of Cu2MgSnS4 thin films with different sulphuration temperatures, Materials Letters 242, 58-61, 2019.
  • [28] J. Shaikh, R.C. Pawar, R.S. Devan, Y.-R. Ma, P.P. Salvi, S.S. Kolekar, P.S. Patil, Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid, Electrochimica Acta 56(5), 2127-2134, 2011.
  • [29] V.T. Tiong, Y. Zhang, J. Bell, H. Wang, Phase-selective hydrothermal synthesis of Cu 2 ZnSnS 4 nanocrystals: the effect of the sulphur precursor, CrystEngComm 16(20), 4306-4313, 2014.
  • [30] M. Saleem, L. Fang, A. Wakeel, M. Rashad, C. Kong, Simple preparation and characterization of nano-crystalline zinc oxide thin films by sol-gel method on glass substrate, 2012.
  • [31] J.J. Scragg, T. Ericson, X. Fontané, V. Izquierdo‐Roca, A. Pérez‐Rodríguez, T. Kubart, M. Edoff, C. Platzer‐Björkman, Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells, Progress in Photovoltaics: Research and Applications 22(1), 10-17, 2014.
  • [32] L. Chen, H. Deng, J. Tao, W. Zhou, L. Sun, F. Yue, P. Yang, J. Chu, Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin films fabricated by sol–gel technique, Journal of Alloys and Compounds 640, 23-28, 2015.
  • [33] J. Jiang, L. Zhang, W. Wang, R. Hong, The role of sulphur in the sulphurization of CZTS layer prepared by DC magnetron sputtering from a single quaternary ceramic target, Ceramics International 44(10), 11597-11602, 2018.
  • [34] W. Wang, G. Wang, G. Chen, S. Chen, Z. Huang, The effect of sulphur vapor pressure on Cu2ZnSnS4 thin film growth for solar cells, Solar Energy 148 12-16, 2017.
  • [35] M. Olgar, A. Seyhan, A. Sarp, R. Zan, Impact of sulphurization parameters on properties of CZTS thin films grown using quaternary target, Journal of Materials Science: Materials in Electronics 31(22), 20620-20631, 2020.
  • [36] S. Manjunatha, R.H. Krishna, T. Thomas, B. Panigrahi, M. Dharmaprakash, Moss-Burstein effect in stable, cubic ZrO2: Eu+3 nanophosphors derived from rapid microwave-assisted solution-combustion technique, Materials Research Bulletin 98, 139-147, 2018.
  • [37] J. Tauc, Amorphous and liquid semiconductors, Springer Science & Business Media, 2012.
  • [38] J. Yu, H. Deng, Q. Zhang, J. Tao, L. Sun, P. Yang, J. Chu, The role of sulphurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics, Materials Letters 233, 111-114, 2018.
  • [39] J. Paier, R. Asahi, A. Nagoya, G. Kresse, Cu2ZnSnS4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study, Physical Review B 79(11), 115126, 2009.
Year 2022, Volume: 8 Issue: 1, 34 - 45, 17.06.2022
https://doi.org/10.51477/mejs.1095220

Abstract

References

  • [1] A. Rockett, R. Birkmire, CuInSe2 for photovoltaic applications, Journal of Applied Physics 70(7) R81-R97, 1991.
  • [2] C.-Y. Su, W.-H. Ho, H.-C. Lin, C.-Y. Nieh, S.-C. Liang, The effects of the morphology on the CIGS thin films prepared by CuInGa single precursor, Solar energy materials and solar cells 95(1) 261-263, 2011.
  • [3] J. Britt, C. Ferekides, Thin‐film CdS/CdTe solar cell with 15.8% efficiency, Applied physics letters 62(22), 2851-2852, 1993.
  • [4] S. Kahraman, S. Çetinkaya, M. Podlogar, S. Bernik, H. Çetinkara, H. Güder, Effects of the sulphurization temperature on sol gel-processed Cu2ZnSnS4 thin films, Ceramics International 39(8), 9285-9292, 2013.
  • [5] X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells, Solar Energy 77(6) 803-814, 2004.
  • [6] J. K. Larsen, F. Larsson, T. Törndahl, N. Saini, L. Riekehr, Y. Ren, C. Platzer‐Björkman, Cadmium free Cu2ZnSnS4 solar cells with 9.7% efficiency, Advanced Energy Materials 9(21), 1900439, 2019.
  • [7] J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, K.-H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process, Solar energy materials and solar cells 75(1-2), 155-162, 2003.
  • [8] H. Guan, X. Wang, Y. Huang, Optical, photocatalytic and thermoelectric properties of Cu2MeSnS4 (Me= Mn 2, Fe 2, Co 2) nanocrystals via microwave-assisted solvothermal method, Chalcogenide Letters 15(9), 435-440, 2018.
  • [9] H. Guan, H. Hou, M. Li, J. Cui, Photocatalytic and thermoelectric properties of Cu2MnSnS4 nanoparticles synthesized via solvothermal method, Materials Letters 188, 319-322, 2017.
  • [10] X. Li, Z. Hou, S. Gao, Y. Zeng, J. Ao, Z. Zhou, Y. Zhang, B. Da, W. Liu, Y. Sun, Y. Zhang, Efficient optimization of the performance of Mn2+-doped kesterite solar cell: Machine learning aided synthesis of high efficient Cu2(Mn, Zn)Sn(S, Se)4 Solar Cells, Solar RRL 2(12), 1800198, 2018.
  • [11] J. Yu, H. Deng, Q. Zhang, J. Tao, L. Sun, P. Yang, J. Chu, The role of sulfurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics, Materials Letters 233, 111-114, 2018.
  • [12] K. Rudisch, W.F. Espinosa‐García, J.M. Osorio‐Guillén, C.M. Araujo, C. Platzer‐Björkman, J.J. Scragg, Structural and electronic properties of Cu2MnSnS4 from experiment and First‐Principles calculations, Physica status solidi (b) 256(7), 1800743, 2019.
  • [13] X. Liang, P. Guo, G. Wang, R. Deng, D. Pan, X. Wei, Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure, RSC Advances 2(12), 5044-5046, 2012.
  • [14] Y. Cui, R. Deng, G. Wang, D. Pan, A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M= Co2+, Fe2+, Ni2+, Mn2+) nanocrystals, Journal of Materials Chemistry 22(43), 23136-23140, 2012
  • [15] M. Quintero, E. Moreno, S. Alvarez, J. Marquina, C. Rincón, E. Quintero, P. Grima, J.-A. Heano, M.A. Macías, Lattice parameter values and phase transitions for the Cu2-II-IV-S4 (Se4)(II= Mn, Fe, Co; IV= Si, Ge, Sn) magnetic semiconductor compounds, Rev. LatinAm. Metal. Mater. 34(1), 2014.
  • [16] T.K. Todorov, K.B. Reuter, D.B. Mitzi, High‐efficiency solar cell with earth‐abundant liquid‐processed absorber, Advanced Materials 22(20), 156-159, 2010.
  • [17] Y. Zou, X. Su, J. Jiang, Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S, Journal of the American Chemical Society 135(49), 18377-18384, 2013.
  • [18] P.K. Sarswat, M. Snure, M.L. Free, A. Tiwari, CZTS thin films on transparent conducting electrodes by electrochemical technique, Thin Solid Films 520(6), 1694-1697, 2012.
  • [19] K. Tanaka, N. Moritake, H. Uchiki, Preparation of Cu2ZnSnS4 thin films by sulphurizing sol–gel deposited precursors, Solar energy materials and solar cells 91(13), 1199-1201, 2007.
  • [20] S. Vanalakar, G. Agawane, S. Shin, M. Suryawanshi, K. Gurav, K. Jeon, P. Patil, C. Jeong, J. Kim, J. Kim, A review on pulsed laser deposited CZTS thin films for solar cell applications, Journal of Alloys and Compounds 619, 109-121, 2015.
  • [21] Y. Lu, S. Wang, Z. Li, Z. Jiang, M. Yang, Q. Li, Effects of sputtering period on the performance of Cu2ZnSnS4 solar cells, Physica B: Condensed Matter 507, 35-40, 2017.
  • [22] A. Tombak, Y.S. Ocak, M.F. Genişel, T. Kilicoglu, Electrical and optical properties of Cu2ZnSnS4 grown by a thermal co-evaporation method and its diode application, Materials Science in Semiconductor Processing 28, 98-102, 2014.
  • [23] M.Z. Ansari, N. Khare, Structural and optical properties of CZTS thin films deposited by ultrasonically assisted chemical vapour deposition, Journal of Physics D: Applied Physics 47(18), 185101, 2014.
  • [24] B. Liu, J. Guo, R. Hao, L. Wang, K. Gu, S. Sun, A. Aierken, Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell, Solar Energy 201, 219-226, 2020.
  • [25] K. Maeda, K. Tanaka, Y. Nakano, H. Uchiki, Annealing temperature dependence of properties of Cu2ZnSnS4 thin films prepared by sol–gel sulfurization method. Japanese Journal of Applied Physics 50(5S2), 05FB08, 2011.
  • [26] E. Waluś, M. Manecki, G. Cios, T. Tokarski, Effect of a sulfur precursor on the hydrothermal synthesis of Cu2MnSnS4, Materials 14(13), 3457, 2021.
  • [27] G. Yang, X. Zhai, Y. Li, B. Yao, Z. Ding, R. Deng, H. Zhao, L. Zhang, Z. Zhang, Synthesis and characterizations of Cu2MgSnS4 thin films with different sulphuration temperatures, Materials Letters 242, 58-61, 2019.
  • [28] J. Shaikh, R.C. Pawar, R.S. Devan, Y.-R. Ma, P.P. Salvi, S.S. Kolekar, P.S. Patil, Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid, Electrochimica Acta 56(5), 2127-2134, 2011.
  • [29] V.T. Tiong, Y. Zhang, J. Bell, H. Wang, Phase-selective hydrothermal synthesis of Cu 2 ZnSnS 4 nanocrystals: the effect of the sulphur precursor, CrystEngComm 16(20), 4306-4313, 2014.
  • [30] M. Saleem, L. Fang, A. Wakeel, M. Rashad, C. Kong, Simple preparation and characterization of nano-crystalline zinc oxide thin films by sol-gel method on glass substrate, 2012.
  • [31] J.J. Scragg, T. Ericson, X. Fontané, V. Izquierdo‐Roca, A. Pérez‐Rodríguez, T. Kubart, M. Edoff, C. Platzer‐Björkman, Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells, Progress in Photovoltaics: Research and Applications 22(1), 10-17, 2014.
  • [32] L. Chen, H. Deng, J. Tao, W. Zhou, L. Sun, F. Yue, P. Yang, J. Chu, Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin films fabricated by sol–gel technique, Journal of Alloys and Compounds 640, 23-28, 2015.
  • [33] J. Jiang, L. Zhang, W. Wang, R. Hong, The role of sulphur in the sulphurization of CZTS layer prepared by DC magnetron sputtering from a single quaternary ceramic target, Ceramics International 44(10), 11597-11602, 2018.
  • [34] W. Wang, G. Wang, G. Chen, S. Chen, Z. Huang, The effect of sulphur vapor pressure on Cu2ZnSnS4 thin film growth for solar cells, Solar Energy 148 12-16, 2017.
  • [35] M. Olgar, A. Seyhan, A. Sarp, R. Zan, Impact of sulphurization parameters on properties of CZTS thin films grown using quaternary target, Journal of Materials Science: Materials in Electronics 31(22), 20620-20631, 2020.
  • [36] S. Manjunatha, R.H. Krishna, T. Thomas, B. Panigrahi, M. Dharmaprakash, Moss-Burstein effect in stable, cubic ZrO2: Eu+3 nanophosphors derived from rapid microwave-assisted solution-combustion technique, Materials Research Bulletin 98, 139-147, 2018.
  • [37] J. Tauc, Amorphous and liquid semiconductors, Springer Science & Business Media, 2012.
  • [38] J. Yu, H. Deng, Q. Zhang, J. Tao, L. Sun, P. Yang, J. Chu, The role of sulphurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics, Materials Letters 233, 111-114, 2018.
  • [39] J. Paier, R. Asahi, A. Nagoya, G. Kresse, Cu2ZnSnS4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study, Physical Review B 79(11), 115126, 2009.
There are 39 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Classical Physics (Other)
Journal Section Article
Authors

Canan Aytuğ Ava 0000-0003-4771-816X

Şilan Baturay 0000-0002-8122-6671

Publication Date June 17, 2022
Submission Date March 29, 2022
Acceptance Date June 14, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

IEEE C. Aytuğ Ava and Ş. Baturay, “CHARACTERIZATION OF CU2MNSNS4 THIN FILMS FABRICATED BY SPIN COATING”, MEJS, vol. 8, no. 1, pp. 34–45, 2022, doi: 10.51477/mejs.1095220.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png