Research Article
BibTex RIS Cite

Lemna minor 'un Belediye Atıksuyu Arıtımındaki Performansı

Year 2024, Volume: 10 Issue: 1, 59 - 67, 30.04.2024

Abstract

Teknolojik gelişmeler, artan nüfus yoğunluğu, kentselleşme ve sanayileşmenin bir sonucu olarak meydana gelen çevresel sorunların en başında atık suların bertarafı gelmektedir. Son yıllarda da atık su arıtımında sucul bitkilerden olan Lemna minor kullanımı giderek artmıştır. Su mercimeğinin atık suların arıtılmasında kullanılmasının temel nedenleri arasında L. minör ile elde edilen biyokütlenin yüksek protein içermesi, üretim hızı ve düşük lif içeriği ile suyun iyileştirilmesi sonucu kaliteli bir ürün oluşturmak sayılabilmektedir. Bu çalışmanın amacı; belediye atık suyunda L. minor sucul bitkisini kullanarak kirletici uzaklaştırma kapasitesini tespit etmektir. Bu amaçla; 2022 yılında Ege Üniversitesi Su Ürünleri Fakültesi Yetiştiricilik Bölümü Urla tesisi su bitkileri laboratuvarında 15 gün boyunca Hoagland besin ortamında zenginleştirilmiş su mercimeği kültüründen elde edilen L. minor örnekleri 1000 ml’lik plastik kap içerisine 5 cm yüksekliğinde toplam 250 ml hacimde olan atık su ile koyulmuştur. Kontrol grubunda ise sadece atık su kullanılmıştır. Denemeler belediye atık suyunda 3 tekrarlı olacak şekilde gerçekleştirilmiştir. Denemelerde su sıcaklığı 24±1℃ de sabit tutulmuş olup aydınlatma olarak gün ışığı led lambalar ile 16:8 saat gece-gündüz foto periyodu kullanılmıştır. Deneme sonucunda giriş ve çıkış suyunda fizikokimyasal parametreler sırasıyla; pH (7,1-8,2 mg/L), COD (210-90 mg/L), NH4+-N (79-58 mg/L), NO3-N (26-13 mg/L), PO43-P (16-9 mg/L) olarak tespit edilmiştir. Yapılan çalışma L. minor’un atık su arıtımında oldukça etkili olduğunu kanıtlamıştır.

References

  • Allen WC, Hook PB, Biederman JA, Stein OR. (2002). Temperature and wetland plant species effects on wastewater treatment and root zone oxidation, Journal of Environmental Quality, 31(3), 1010-1016.
  • Al-nozaly F, Alaerts G, Veenstra S. (2000). Performance of duckweed covered sewage lagoons-II. Nitrogen and phosphorus balance and plant productivity, Water Research, 34(10), 2734-2741.
  • Anonim. (1998). Design manual: Constructed wetlands and aquatic plant systems for municipal wastewater treatment. United States environmental protection agency office of research and development.
  • Awuah E, Oppong-Peprah M, Lubberding HJ, Gijzen HJ. (2004). Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage, Journal of Toxicology and Environmental Health, Part A, 67(20-22), 1727-1739.
  • Azeez NM, Sabbar AA. (2012). Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah oil refinery, Journal of Applied Phytotechnology in Environmental Sanitation, 1(4), 163-172.
  • Brasil YL, Silva AF, Gomes RF, Amaral MC. (2021). Technical and economic evaluation of the integration of membrane bioreactor and air-stripping/absorption processes in the treatment of landfill leachate, Waste Management, 134, 110-119.
  • Cheng J, Bergmann BA, Classen JJ, Howard JW, Yamamoto YT. (2002). Nutrient removal from swine lagoon liquid by Lemna minor. Am Soc Agriculture Engineering, 45, 1003-1010.
  • Ciria MP, Solano ML, Soriano P. (2005). Role of Macrophyte Typha latifolia in a Constructed Wetland for Wastewater Treatment and Assessment of Its Potential as a Biomass Fuel, Biosystems Engineering, 92(4), 535-544.
  • Coşkun Ç, Pulatsü S, Coşkun T. (2018). Evsel atıksulardan Azot ve Fosforun Biyolojik Giderilme Yöntemleri, KİFMD, 2, 53-63.
  • Culley DD, Rejmankova E, Kvet Jand Fry JB. (1981). Production, chemical quality, and use of duckweed (Lemnaceae) in aquaculture, waste management, and animal feeds. J. World Maric. Soc, 12(2), 27-49. Dotch MS, Gerald JA. (1995). Screening level model for estimating pollutant removal by wetlands, Wetlands research program technical report, WRP-CP-9.
  • Dipu S, Kumar AA, Thanga VSG. (2011). Phytoremediation of dairy effluent by constructed wetland technology, The environmentalist, 31, 263-278.
  • Ekperusi AO, Sikoki FD, Nwachukwu EO. (2019). Application of common duckweed (Lemna minor) in phytoremedation of chemicals in the environment: State and future perspective, Chemosphere, 223, 285e309. https://doi.org/10.1016/j.chemosphere.2019.02.025.
  • EL-Kheir WA, Gahiza Ismail, Farid Abou EL-Nour, Tarek Tawfik, Doaa H. (2007). Assessment of the efficiency of Duckweed (Lemna gibba) in wastewater treatment, International Journal of agriculture & Biology, 2007; 5:681-687.
  • Eremektar G, Tanık A, Övez S, Orhon D, Arslan Alaton İ, Gürel M. (2005). Türkiye’de doğal arıtma uygulamaları ve projeleri. Medaware Projesi. Ankara.
  • Hammouda O, Gaber A, Abdel-Hameed MS. (1995). Assessment of effectiveness of treatment of wastewater contaminated aquatic system with Lemna gibba, Enzyme and Microbial Technology, 17:317-323. Hastie BA. (1992). The use of aquatic plants in wastewater treatment: a literature review, 0141.
  • Hoagland DR, Arnon DI. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Iatrou EI, Kora E, Stasinakis AS. (2019). Investigation of biomass production, crude protein and starch content in domestic wastewater treatment systems planted with L. minor and L. gibba, Environmental Technology, 40, 2649e2656. https://doi.org/ 10.1080/09593330.2018.1448002.
  • Gatidou G, Oursouzidou M, Stefanatou A, Stasinakis AS. (2017). Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems, Sci. Total Environ, 596e597, 12e17. https://doi.org/10.1016/ j. scitotenv.2017.04.051.
  • Gökyay O, Balcıgil M. (2017). Ham Ve Sentetik Atıksularda Su Mercimeği (Lemna Minor L.) Kullanılarak Karbon Ve Besi Maddelerinin Gideriminin İncelenmesi Ve Karşılaştırılması, Marmara Fen Bilimleri Dergisi, 29(4), 124-130.
  • Gregory DR. (1999). Community based technologies for domestic wastewater treatment and reuse: Options for urban agriculture. International development research centre cities feeding people series report 27. Karabas H. (2019). Removal of heavy metal pollution in soil and water by phytoremediation method. Apelasyon, 69. http://apelasyon.com/ Yazi/1034-toprak-ve-sulardaki-agir-metal-kirliliginin-fitoremediasyon-yontemiyle-giderilmesi.
  • Körner S, Lyatuu GB, Vermaat JE. (1998). The influence of Lemna gibba L. on the degradation of organik material in duckweed-covered domestic wastewater, Water Research, 32: 3092-3098.
  • Krishna KB, Polprasert C. (2008). An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system, Ecological engineering, 34(3), 243-250.
  • Leng RA. (1999). Duckweed: A tiny aquatic plant with enormous potential for agriculture and environment. MAF. (2023). Ministry of Agriculture and Forestry) General Directorate of Water Management's "Screened Artificial Wetland Pilot Project to Improve the Quality of Water Returning from Irrigation" https://www.tarimorman.gov.tr/SYGM/Belgeler/PROJELER/sygm%20tamamlanan%20projeler.pdf
  • Moragoda MAIA, Kumarage KDAN, Weerakoon GMPR, Mowjood MIM. (2022). Investigation on the performance of multistacked floating wetlands for leachate treatment in a controlled environment. Proceedings of the 11th International Conference on Sustainable Built Environment (Kandy, Sri Lanka), pp. 657–667.
  • Mitsch WJ, Jrgensen SE. (2003). Ecological engineering and Ecosystem restoration, Wiley, 0-471-33264-X, 424 pages.
  • Oron G, Porath D, Jansen H. (1987). Performance of duckweed species Lemna gibba on municipal water for effluent renovation and protein Production, Biotechnology and Bioengineering, 29:258-267.
  • Oron G. (1994). Duckweed culture for wastewater renovation and biomass Production, Agric Water Management, 26(1- 2), 27-40.
  • Özengin N, Elmaci A. (2007). Performance of Duckweed(Lemna minor L.) on different types of wastewater treatment, Journal of Environmental Biology, 28(2), 307-314.
  • Perera KRS, Yatawara M. (2021). Phytoremediation of partially treated MSW leachate by selected free floating and emergent macrophytes in subsurface vertical flow constructed wetlands, Environmental Technology & Innovation, 24, 101928.
  • Paolacci S, Stejskal V, Toner D, Jansen MA. (2022). Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species, Environmental Pollution, 302, 119059.
  • Porath D, Pollock J. (1982). Ammonia stripping by duckweed and its feasibility in circulating aquaculture, Aquatic Botony, 13(2), 125-131.
  • Redd KR, DeBusk WF. (1985). Nutrient removal potential of selected aquatic macrophytes, Journal of Environmental Quality, 14, 459-462.
  • Skillicorn P, Spira W, Journey W. (1993). Duckweed aquaculture. A new aquatic forming system for developing countries. The World Bank; Washington DC, USA.
  • Smith MD, Moelyowati I. (2001). Duckweed based wastewater treatment (DWWT): design guidelines for hot climates, Water science and technology, 43(11), 291-299.
  • Surampalli RY, Tyagi RD, Karl O, James A. (1997). Heidman. Nitrification, denitrification and phosphorus removal in sequential batch reactors, Bioresource Technol., 61, 151-157.
  • Thakuria A, Singh KK, Dutta A, Corton E, Stom D, Barbora L, Goswami P. (2023). Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches, International Journal of Phytoremediation, 25(13), 1699-1713.
  • Toyama T, Hanaoka T, Tanaka Y, Morikawa M, Mori K. (2018). Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent, Biores. Technol. 250, 464e473. https://doi.org/10.1016/ j.biortech.2017.11.054.
  • Selvarani AJ, Padmavathy P, Srinivasan A, Jawahar P. (2015). Performance of Duckweed (Lemna minor) on different types of wastewater treatment, International Journal of Fisheries and Aquatic Studies, 2(4), 208-212.
  • Sharma S, Singh B, Manchanda VK. (2015). Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water, Environmental Science and Pollution Research, 22, 946-962.
  • Shah M, Hashmi HN, Ghumman AR, Zeeshan M. (2015). Performance assessment of aquatic macrophytes for treatment of municipal wastewater, Journal of the South African Institution of Civil Engineering, 57(3), 18-25.
  • Spieles DJ, Mitsch WJ. (2000). The Effects of Season and Hydrologic and Chemical Loading on Nitrate Retention in Constructed Wetlands: A Comparison of Low- and High-Nutrient Riverine Systems, Ecological Engineering, 14 (2000) 77-91.
  • Tarlan E, Gür K, Yılmaz Z. (2005). S.Ü. Kampüs atık sularının karakterizasyonu ve su mercimeği (Lemna minor L.) ile arıtılabilirliği, S.Ü. Müh.-Mim. Fak. Derg., 20, 4-12.
  • Tchobanoglous G, Burton FL, Stensel HD. (1991). Wastewater engineering. Management, 7(1), 4. Tekoğul H. (2021). Lemna Minor (Duckweed) and Its Uses". Visional Studies in Agricultural and Aquatic Science II. Tolon, M. T., & Yücel, B. (Eds.). Akademisyen Books. 71-88.
  • Tekoğul H. (2023a). Phytoremedıatıon Eco-Friendly Use Of Aquatic Plants In Wastewater Treatment”. Advancements In Aquaculture: Sustaınable Practıces, Innovatıons, And Applıcatıons. Aysun, K. & Karataş, A. P. D. B.(Eds) İksad Publication-159-192
  • Tekoğul H. (2023b). Wastewater Treatment of Solid Waste Leachate and Production of Proteinaceous Biomass Using Duckweed Vegetation (Lemna minor), Journal of Coastal Research, 39(2), 296-302.
  • Tekoğul H. (2023c). Treatment of leachate solid wastewater and protein-rich biomass production using Ceratophyllum demersum (Linnaeus, 1753). Israeli Journal of Aquaculture – Bamidgeh.
  • Temel FA. (2017). Use of artificial wetlands in the treatment of industrial wastewater. Dicle University Faculty of Engineering, Engineering Journal, 8(1), 213-226.
  • Topal M, Karagözoğlu B, Öbek E, Topal, EIA. (2011). Bazı su mercimeklerinin nutrient gideriminde kullanımı, Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2): 12-28.
  • Wolverton BC. (1979). Engineering design data for small vascular aquatic plants wastewater treatment systems. In: Proc. EPA Seminar on Aquaculture Systems for wastewater treatment, EPA 430/9-80-006,
  • Yılmaz Z, Kemal GÜR, Tarlan E. (2005). Sü Kampüs Atıksularının Karakterizaysonu Ve Su Mercimeği (Lemna Mınor L.) İle Arıtılabilirliği, Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 20(4), 1-10.
  • Žaltauskaitė J, Sujetoviene G, Cypaite A, Auzbikaviciute A. (2014). Lemna minor as a tool for wastewater toxicity assessment and pollutants removal agent. In Environmental engineering. Proceedings of the international conference on environmental engineering. ICEE (Vol. 9, p. 1). Vilnius Gediminas Technical University, Department of Construction Economics & Property.
  • Zhao Y, Fang Y, Jin Y, Huang J, Bao S, He Z, Zhao H. (2014). Effects of operation parameters on nutrient removal from wastewater and high-protein biomass production in a duckweed-based (Lemma aequinoctialis) pilot-scale system, Water science and technology, 70(7), 1195-1204.
  • Zhao Y, Tu Q, Yang Y, Shu X, Ma W, Fang Y, Duan C. (2022). Long-term effects of duckweed cover on the performance and microbial community of a pilot-scale waste stabilization pond, Journal of Cleaner Production, 371, 133531.
  • Zimmo O. (2003). Nitrogen transformations and removal mechanisms in algal and duckweed waste stabilisation ponds. Wageningen University and Research.
  • Zhang J, Zhang Y. (2014). Hydrothermal liquefaction of microalgae in an ethanol–water co-solvent to produce biocrude oil, Energy & Fuels, 28(8), 5178-5183.
Year 2024, Volume: 10 Issue: 1, 59 - 67, 30.04.2024

Abstract

References

  • Allen WC, Hook PB, Biederman JA, Stein OR. (2002). Temperature and wetland plant species effects on wastewater treatment and root zone oxidation, Journal of Environmental Quality, 31(3), 1010-1016.
  • Al-nozaly F, Alaerts G, Veenstra S. (2000). Performance of duckweed covered sewage lagoons-II. Nitrogen and phosphorus balance and plant productivity, Water Research, 34(10), 2734-2741.
  • Anonim. (1998). Design manual: Constructed wetlands and aquatic plant systems for municipal wastewater treatment. United States environmental protection agency office of research and development.
  • Awuah E, Oppong-Peprah M, Lubberding HJ, Gijzen HJ. (2004). Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage, Journal of Toxicology and Environmental Health, Part A, 67(20-22), 1727-1739.
  • Azeez NM, Sabbar AA. (2012). Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah oil refinery, Journal of Applied Phytotechnology in Environmental Sanitation, 1(4), 163-172.
  • Brasil YL, Silva AF, Gomes RF, Amaral MC. (2021). Technical and economic evaluation of the integration of membrane bioreactor and air-stripping/absorption processes in the treatment of landfill leachate, Waste Management, 134, 110-119.
  • Cheng J, Bergmann BA, Classen JJ, Howard JW, Yamamoto YT. (2002). Nutrient removal from swine lagoon liquid by Lemna minor. Am Soc Agriculture Engineering, 45, 1003-1010.
  • Ciria MP, Solano ML, Soriano P. (2005). Role of Macrophyte Typha latifolia in a Constructed Wetland for Wastewater Treatment and Assessment of Its Potential as a Biomass Fuel, Biosystems Engineering, 92(4), 535-544.
  • Coşkun Ç, Pulatsü S, Coşkun T. (2018). Evsel atıksulardan Azot ve Fosforun Biyolojik Giderilme Yöntemleri, KİFMD, 2, 53-63.
  • Culley DD, Rejmankova E, Kvet Jand Fry JB. (1981). Production, chemical quality, and use of duckweed (Lemnaceae) in aquaculture, waste management, and animal feeds. J. World Maric. Soc, 12(2), 27-49. Dotch MS, Gerald JA. (1995). Screening level model for estimating pollutant removal by wetlands, Wetlands research program technical report, WRP-CP-9.
  • Dipu S, Kumar AA, Thanga VSG. (2011). Phytoremediation of dairy effluent by constructed wetland technology, The environmentalist, 31, 263-278.
  • Ekperusi AO, Sikoki FD, Nwachukwu EO. (2019). Application of common duckweed (Lemna minor) in phytoremedation of chemicals in the environment: State and future perspective, Chemosphere, 223, 285e309. https://doi.org/10.1016/j.chemosphere.2019.02.025.
  • EL-Kheir WA, Gahiza Ismail, Farid Abou EL-Nour, Tarek Tawfik, Doaa H. (2007). Assessment of the efficiency of Duckweed (Lemna gibba) in wastewater treatment, International Journal of agriculture & Biology, 2007; 5:681-687.
  • Eremektar G, Tanık A, Övez S, Orhon D, Arslan Alaton İ, Gürel M. (2005). Türkiye’de doğal arıtma uygulamaları ve projeleri. Medaware Projesi. Ankara.
  • Hammouda O, Gaber A, Abdel-Hameed MS. (1995). Assessment of effectiveness of treatment of wastewater contaminated aquatic system with Lemna gibba, Enzyme and Microbial Technology, 17:317-323. Hastie BA. (1992). The use of aquatic plants in wastewater treatment: a literature review, 0141.
  • Hoagland DR, Arnon DI. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Iatrou EI, Kora E, Stasinakis AS. (2019). Investigation of biomass production, crude protein and starch content in domestic wastewater treatment systems planted with L. minor and L. gibba, Environmental Technology, 40, 2649e2656. https://doi.org/ 10.1080/09593330.2018.1448002.
  • Gatidou G, Oursouzidou M, Stefanatou A, Stasinakis AS. (2017). Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems, Sci. Total Environ, 596e597, 12e17. https://doi.org/10.1016/ j. scitotenv.2017.04.051.
  • Gökyay O, Balcıgil M. (2017). Ham Ve Sentetik Atıksularda Su Mercimeği (Lemna Minor L.) Kullanılarak Karbon Ve Besi Maddelerinin Gideriminin İncelenmesi Ve Karşılaştırılması, Marmara Fen Bilimleri Dergisi, 29(4), 124-130.
  • Gregory DR. (1999). Community based technologies for domestic wastewater treatment and reuse: Options for urban agriculture. International development research centre cities feeding people series report 27. Karabas H. (2019). Removal of heavy metal pollution in soil and water by phytoremediation method. Apelasyon, 69. http://apelasyon.com/ Yazi/1034-toprak-ve-sulardaki-agir-metal-kirliliginin-fitoremediasyon-yontemiyle-giderilmesi.
  • Körner S, Lyatuu GB, Vermaat JE. (1998). The influence of Lemna gibba L. on the degradation of organik material in duckweed-covered domestic wastewater, Water Research, 32: 3092-3098.
  • Krishna KB, Polprasert C. (2008). An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system, Ecological engineering, 34(3), 243-250.
  • Leng RA. (1999). Duckweed: A tiny aquatic plant with enormous potential for agriculture and environment. MAF. (2023). Ministry of Agriculture and Forestry) General Directorate of Water Management's "Screened Artificial Wetland Pilot Project to Improve the Quality of Water Returning from Irrigation" https://www.tarimorman.gov.tr/SYGM/Belgeler/PROJELER/sygm%20tamamlanan%20projeler.pdf
  • Moragoda MAIA, Kumarage KDAN, Weerakoon GMPR, Mowjood MIM. (2022). Investigation on the performance of multistacked floating wetlands for leachate treatment in a controlled environment. Proceedings of the 11th International Conference on Sustainable Built Environment (Kandy, Sri Lanka), pp. 657–667.
  • Mitsch WJ, Jrgensen SE. (2003). Ecological engineering and Ecosystem restoration, Wiley, 0-471-33264-X, 424 pages.
  • Oron G, Porath D, Jansen H. (1987). Performance of duckweed species Lemna gibba on municipal water for effluent renovation and protein Production, Biotechnology and Bioengineering, 29:258-267.
  • Oron G. (1994). Duckweed culture for wastewater renovation and biomass Production, Agric Water Management, 26(1- 2), 27-40.
  • Özengin N, Elmaci A. (2007). Performance of Duckweed(Lemna minor L.) on different types of wastewater treatment, Journal of Environmental Biology, 28(2), 307-314.
  • Perera KRS, Yatawara M. (2021). Phytoremediation of partially treated MSW leachate by selected free floating and emergent macrophytes in subsurface vertical flow constructed wetlands, Environmental Technology & Innovation, 24, 101928.
  • Paolacci S, Stejskal V, Toner D, Jansen MA. (2022). Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species, Environmental Pollution, 302, 119059.
  • Porath D, Pollock J. (1982). Ammonia stripping by duckweed and its feasibility in circulating aquaculture, Aquatic Botony, 13(2), 125-131.
  • Redd KR, DeBusk WF. (1985). Nutrient removal potential of selected aquatic macrophytes, Journal of Environmental Quality, 14, 459-462.
  • Skillicorn P, Spira W, Journey W. (1993). Duckweed aquaculture. A new aquatic forming system for developing countries. The World Bank; Washington DC, USA.
  • Smith MD, Moelyowati I. (2001). Duckweed based wastewater treatment (DWWT): design guidelines for hot climates, Water science and technology, 43(11), 291-299.
  • Surampalli RY, Tyagi RD, Karl O, James A. (1997). Heidman. Nitrification, denitrification and phosphorus removal in sequential batch reactors, Bioresource Technol., 61, 151-157.
  • Thakuria A, Singh KK, Dutta A, Corton E, Stom D, Barbora L, Goswami P. (2023). Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches, International Journal of Phytoremediation, 25(13), 1699-1713.
  • Toyama T, Hanaoka T, Tanaka Y, Morikawa M, Mori K. (2018). Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent, Biores. Technol. 250, 464e473. https://doi.org/10.1016/ j.biortech.2017.11.054.
  • Selvarani AJ, Padmavathy P, Srinivasan A, Jawahar P. (2015). Performance of Duckweed (Lemna minor) on different types of wastewater treatment, International Journal of Fisheries and Aquatic Studies, 2(4), 208-212.
  • Sharma S, Singh B, Manchanda VK. (2015). Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water, Environmental Science and Pollution Research, 22, 946-962.
  • Shah M, Hashmi HN, Ghumman AR, Zeeshan M. (2015). Performance assessment of aquatic macrophytes for treatment of municipal wastewater, Journal of the South African Institution of Civil Engineering, 57(3), 18-25.
  • Spieles DJ, Mitsch WJ. (2000). The Effects of Season and Hydrologic and Chemical Loading on Nitrate Retention in Constructed Wetlands: A Comparison of Low- and High-Nutrient Riverine Systems, Ecological Engineering, 14 (2000) 77-91.
  • Tarlan E, Gür K, Yılmaz Z. (2005). S.Ü. Kampüs atık sularının karakterizasyonu ve su mercimeği (Lemna minor L.) ile arıtılabilirliği, S.Ü. Müh.-Mim. Fak. Derg., 20, 4-12.
  • Tchobanoglous G, Burton FL, Stensel HD. (1991). Wastewater engineering. Management, 7(1), 4. Tekoğul H. (2021). Lemna Minor (Duckweed) and Its Uses". Visional Studies in Agricultural and Aquatic Science II. Tolon, M. T., & Yücel, B. (Eds.). Akademisyen Books. 71-88.
  • Tekoğul H. (2023a). Phytoremedıatıon Eco-Friendly Use Of Aquatic Plants In Wastewater Treatment”. Advancements In Aquaculture: Sustaınable Practıces, Innovatıons, And Applıcatıons. Aysun, K. & Karataş, A. P. D. B.(Eds) İksad Publication-159-192
  • Tekoğul H. (2023b). Wastewater Treatment of Solid Waste Leachate and Production of Proteinaceous Biomass Using Duckweed Vegetation (Lemna minor), Journal of Coastal Research, 39(2), 296-302.
  • Tekoğul H. (2023c). Treatment of leachate solid wastewater and protein-rich biomass production using Ceratophyllum demersum (Linnaeus, 1753). Israeli Journal of Aquaculture – Bamidgeh.
  • Temel FA. (2017). Use of artificial wetlands in the treatment of industrial wastewater. Dicle University Faculty of Engineering, Engineering Journal, 8(1), 213-226.
  • Topal M, Karagözoğlu B, Öbek E, Topal, EIA. (2011). Bazı su mercimeklerinin nutrient gideriminde kullanımı, Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2): 12-28.
  • Wolverton BC. (1979). Engineering design data for small vascular aquatic plants wastewater treatment systems. In: Proc. EPA Seminar on Aquaculture Systems for wastewater treatment, EPA 430/9-80-006,
  • Yılmaz Z, Kemal GÜR, Tarlan E. (2005). Sü Kampüs Atıksularının Karakterizaysonu Ve Su Mercimeği (Lemna Mınor L.) İle Arıtılabilirliği, Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 20(4), 1-10.
  • Žaltauskaitė J, Sujetoviene G, Cypaite A, Auzbikaviciute A. (2014). Lemna minor as a tool for wastewater toxicity assessment and pollutants removal agent. In Environmental engineering. Proceedings of the international conference on environmental engineering. ICEE (Vol. 9, p. 1). Vilnius Gediminas Technical University, Department of Construction Economics & Property.
  • Zhao Y, Fang Y, Jin Y, Huang J, Bao S, He Z, Zhao H. (2014). Effects of operation parameters on nutrient removal from wastewater and high-protein biomass production in a duckweed-based (Lemma aequinoctialis) pilot-scale system, Water science and technology, 70(7), 1195-1204.
  • Zhao Y, Tu Q, Yang Y, Shu X, Ma W, Fang Y, Duan C. (2022). Long-term effects of duckweed cover on the performance and microbial community of a pilot-scale waste stabilization pond, Journal of Cleaner Production, 371, 133531.
  • Zimmo O. (2003). Nitrogen transformations and removal mechanisms in algal and duckweed waste stabilisation ponds. Wageningen University and Research.
  • Zhang J, Zhang Y. (2014). Hydrothermal liquefaction of microalgae in an ethanol–water co-solvent to produce biocrude oil, Energy & Fuels, 28(8), 5178-5183.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Hydrobiology
Journal Section Araştırmalar
Authors

Hatice Tekoğul 0000-0002-9755-8339

Publication Date April 30, 2024
Submission Date April 15, 2024
Acceptance Date April 22, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Tekoğul, H. (2024). Lemna minor ’un Belediye Atıksuyu Arıtımındaki Performansı. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(1), 59-67.
AMA Tekoğul H. Lemna minor ’un Belediye Atıksuyu Arıtımındaki Performansı. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. April 2024;10(1):59-67.
Chicago Tekoğul, Hatice. “Lemna Minor ’un Belediye Atıksuyu Arıtımındaki Performansı”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10, no. 1 (April 2024): 59-67.
EndNote Tekoğul H (April 1, 2024) Lemna minor ’un Belediye Atıksuyu Arıtımındaki Performansı. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10 1 59–67.
IEEE H. Tekoğul, “Lemna minor ’un Belediye Atıksuyu Arıtımındaki Performansı”, Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 10, no. 1, pp. 59–67, 2024.
ISNAD Tekoğul, Hatice. “Lemna Minor ’un Belediye Atıksuyu Arıtımındaki Performansı”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10/1 (April 2024), 59-67.
JAMA Tekoğul H. Lemna minor ’un Belediye Atıksuyu Arıtımındaki Performansı. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2024;10:59–67.
MLA Tekoğul, Hatice. “Lemna Minor ’un Belediye Atıksuyu Arıtımındaki Performansı”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 10, no. 1, 2024, pp. 59-67.
Vancouver Tekoğul H. Lemna minor ’un Belediye Atıksuyu Arıtımındaki Performansı. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2024;10(1):59-67.