Research Article
BibTex RIS Cite

İklim Değişikliği Ev Serçesinin (Passer domesticus) Potansiyel Dağılımını Değiştirmekte midir?

Year 2024, Volume: 10 Issue: 2, 93 - 104, 26.08.2024
https://doi.org/10.58626/menba.1523217

Abstract

İklimsel etkilerin ve parçalanmanın habitatlar üzerindeki etkilerini belirlemek önem arz etmektedir. Küresel iklim değişikliği, habitatlarda ve türlerin dağılımında değişikliklere yol açabilen ve yaban hayatı türleri için tehdit oluşturan bir unsurdur. Türlerin ve yaşadıkları habitatların doğru dağılımını tahmin etmek, türlerin iklim değişikliği altında sürdürülebilirliği ve yönetimi için esastır. Ev serçesi (Passer domesticus), Passeridae familyasına ait yaygın bir kuş türüdür. Bu tür, Dünya çapında geniş bir alana yayılmış olup varlığının çoğu dönemi boyunca insanlarla yakın ilişki içinde olmuştur. Bu çalışmada, Türkiye için gelecekteki iklim senaryoları (2021-2040, 2041-2060 ve 2061-2080) altında Ev Serçesi türü (Passer domesticus) için potansiyel uygun habitatları tahmin etmek için Maksimum Entropi (Maxent) modelini kullanılmıştır.

References

  • Albayrak, T., & Pekgöz, A. K. (2021). Heavy metal effects on bird morphometry: A case study on the house sparrow Passer domesticus. Chemosphere, 276, 130056.
  • Anderson, T. R. (2006). Biology of the ubiquitous house sparrow: from genes to populations. Oxford University Press.
  • Andrew, S. & Griffith, S. (2016). Inaccuracies in the history of a well-known introduction: a case study of the australian house sparrow (Passer domesticus). Avian Research, 7(1).
  • Arab, A., Courter, J., & Zelt, J. (2016). A spatio-temporal comparison of avian migration phenology using citizen science data. Spatial Statistics, 18, 234-245.
  • Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Kühn, I., Macgregor-Fors, I., McDonnell, M., Mörtberg, U., Pyšek, P., Siebert, S., Sushinsky, J., Werner, P. & Winter, M. (2014): A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. – Proceedings of the Royal Society B: Biological Sciences 281(1780): 20133330. doi: 10.1098/rspb.2013.3330.
  • Asik, Y., & Kara, B. (2021). Variation in avian diversity in relation to plant species in urban parks of Aydin, Turkey. Applied Ecology and Environmental Research, 19(3), 2013-2035.
  • Baldock, K. C. R., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., Osgathorpe, L. M., Potts, S. G., Robertson, K. M., Scott, A. V., Stone, G. N., Vaughan, I. P., Memmott, J. (2015). Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. – Proceedings of the Royal Society B: Biological Sciences 282(1803): 20142849. doi: 10.1098/rspb.2014.2849.
  • Balwan, W. & Saba, N. (2020). Decline of house sparrow and common myna population in doda region of jammu and kashmir, india. IJBI, 02(01), 20-24. https://doi.org/10.46505/ijbi.2020.2103
  • Ben-Hamo, M., Burns, D., Bauchinger, U., Mukherjee, S., Embar, K., & Pinshow, B. (2015). Behavioural responses during feather replacement in house sparrows. Journal of Avian Biology, 47(1), 103-108. https://doi.org/10.1111/jav.00651
  • Bichet, C., Scheifler, R., Coeurdassier, M., Julliard, R., Sorci, G., & Loiseau, C. (2013). Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PloS one, 8(1), e53866.
  • Blair, R. B. (1996). Land use and avian species diversity along an urban gradient. – Ecological Applications 6(2): 506-519. doi: 10.2307/2269387.
  • Bradbury, K. (2019). Wildlife gardening: For everyone and everything. – Bloomsbury Wildlife, London Cardillo, M., Mace, G., Jones, K., Bielby, J., Bininda‐Emonds, O., Sechrest, W., … & Purvis, A. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239-1241. https://doi.org/10.1126/science.1116030
  • Del Hoyo, J., Collar, N.J. (Eds) (2016). Illustrated checklist of the birds of the world. Volume 2 Passerines. Lynx Edicions, Barcelona, 903 pp.
  • Deng, Z. (2024). Predicting the spatial distribution of the mangshan pit viper (protobothrops mangshanensis) under climate change scenarios using maxent modeling. Forests, 15(4), 723. https://doi.org/10.3390/f15040723
  • Deutsch, C., Tewksbury, J., Huey, R., Sheldon, K., Ghalambor, C., Haak, D., … & Martin, P. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668-6672. https://doi.org/10.1073/pnas.0709472105
  • Duengen, D., Burkhardt, E., & El‐Gabbas, A. (2022). Fin whale (balaenoptera physalus) distribution modeling on their nordic and barents seas feeding grounds. Marine Mammal Science, 38(4), 1583-1608. https://doi.org/10.1111/mms.12943
  • Eldridge, D., Delgado-Baquerizo, M., Quero, J., Ochoa, V., Gozalo, B., García-Palacios, P., … & Maestre, F. (2020). Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology, 57(2), 424-435. https://doi.org/10.1111/1365-2664.13540
  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A. & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29: 129–151.
  • Evcin, Ö. 2023: Can highway tunnel constructıon change the habitat selection of roe deer (Capreolus capreolus Linnaeus, 1758)?. Environmental Monitoring and Assessment, 195(12), 1410. https://doi.org/10.1007/s10661-023-12003-0
  • Fick, S.E. & R.J. Hijmans, (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
  • Gaston, K.J. (2009). Geographicrangelimitsofspecies.Proceedings. Biological Sciences⁄The Royal Society, 276, 1391–1393.
  • GBIF, (2024). The Global Biodiversity Information Facility, Occurrence record (last accessed on 15.07.2024).
  • Ghosh, S., Kim, K., & Bhattacharya, R. (2010). A survey on house sparrow population decline at bandel, west bengal, india. Journal of the Korean Earth Science Society, 31(5), 448-453. https://doi.org/10.5467/jkess.2010.31.5.448
  • Gill, F., Donsker, D., & Rasmussen, P. (Eds) (2020). IOC World Bird List (v10.1). https://doi.org/10.14344/IOC.ML.10.1 (last accessed on 20.04.2020).
  • Global Biodiversity Information Facility (GBIF). Available at: [https://www.gbif.org/] (https://www.gbif.org/)
  • Goertzen, D., Suhling, F. (2015). Central European cities maintain substantial dragonfly species richness - a chance for biodiversity conservation? – Insect Conservation and Diversity 8(3): 238-246. doi: 10.1111/icad.12102.
  • Gregory, R. D., Noble, D., Field, R., Marchant, J., Raven, M., & Gibbons, D. W. (2003). Using birds as indicators of biodiversity. Ornis hungarica, 12(13), 11-24.
  • Gushit, J. S., Turshak, L. G., Chaskda, A. A., Abba, B. R., & Nwaeze, U. P. (2016). Avian feathers as bioindicator of heavy metal pollution in urban degraded woodland.
  • Hermansen, J., Sæther, S., Elgvin, T., Borge, T., Hjelle, E., & Sætre, G. (2011). Hybrid speciation in sparrows i: phenotypic intermediacy, genetic admixture and barriers to gene flow. Molecular Ecology, 20(18), 3812-3822. https://doi.org/10.1111/j.1365-294x.2011.05183.x
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.
  • Iknayan, K. & Beissinger, S. (2020). Collapse of a desert bird community over the past century driven by climate change. Parks Stewardship Forum, 36(1). https://doi.org/10.5070/p536146409
  • Jarzyna, M., Porter, W., Maurer, B., Zuckerberg, B., & Finley, A. (2015). Landscape fragmentation affects responses of avian communities to climate change. Global Change Biology, 21(8), 2942-2953. https://doi.org/10.1111/gcb.12885
  • Jenouvrier, S. (2013). Impacts of climate change on avian populations. Global Change Biology, 19(7), 2036-2057. https://doi.org/10.1111/gcb.12195
  • Jokimäki, J., Suhonen, J., & Kaisanlahti-Jokimäki, M. (2021). Differential long-term population responses of two closely related human-associated sparrow species with respect to urbanization. Birds, 2(3), 230-249. https://doi.org/10.3390/birds2030017
  • Kaushik, T. & Gupta, R. (2018). Present scenario in respect of house-sparrows’ depleting trends and conservation efforts in and around kurukshetra, haryana, india. Environment Conservation Journal, 19(3), 59-65. https://doi.org/10.36953/ecj.2018.19307
  • Khera, N., Das, A., Srivasatava, S., & Jain, S. (2009). Habitat-wise distribution of the house sparrow (Passer domesticus) in delhi, india. Urban Ecosystems, 13(1), 147-154. https://doi.org/10.1007/s11252-009-0109-8
  • Kowarik, I., von der Lippe, M. (2018). Plant population success across urban ecosystems: A framework to inform biodiversity conservation in cities. – Journal of Applied Ecology 55(5): 2354-2361. doi: 10.1111/1365-2664.13144
  • Lemoine, N., Schaefer, H., & Böhning‐Gaese, K. (2006). Species richness of migratory birds is influenced by global climate change. Global Ecology and Biogeography, 16(1), 55-64. https://doi.org/10.1111/j.1466-8238.2006.00252.x
  • Li, X., Liu, Y., & Zhu, Y. (2022). The effects of climate change on birds and approaches to response. Iop Conference Series Earth and Environmental Science, 1011(1), 012054. https://doi.org/10.1088/1755-1315/1011/1/012054
  • Liebl, A., Schrey, A., Andrew, S.C., Sheldon, E.L., & Griffith, S.C. (2015). Invasion genetics: Lessons from a ubiquitous bird, the house sparrow Passer domesticus. Current Zoology 61: 465–476. https://doi.org/ 10.1093/czoolo/61.3.465
  • MacGregor-Fors, I., Morales‐Pérez, L., Quesada, J., & Schondube, J. (2009). Relationship between the presence of house sparrows (Passer domesticus) and neotropical bird community structure and diversity. Biological Invasions, 12(1), 87-96. https://doi.org/10.1007/s10530-009-9432-5
  • Magalhães-Júnior, A., Moura, G., Ribeiro, L., & Azevedo-Júnior, S. (2017). Potential distribution and conservation of the colobosauroides carvalhoi soares and caramaschi, 1998: a rare and endemic lizard of northeast brazil. Brazilian Journal of Biology, 77(4), 686-695. https://doi.org/10.1590/1519-6984.15815
  • Martin, T. & Maron, J. (2012). Climate impacts on bird and plant communities from altered animal–plant interactions. Nature Climate Change, 2(3), 195-200. https://doi.org/10.1038/nclimate1348
  • McKinney, M. (1997). Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics, 28(1), 495-516. https://doi.org/10.1146/annurev.ecolsys.28.1.495
  • Møller, A. (1990). Sexual behavior is related to badge size in the house sparrow Passer domesticus. Behavioral Ecology and Sociobiology, 27(1). https://doi.org/10.1007/bf00183309
  • Moss, S., & Martin, M. (2019). Urban aviary: A modern guide to city birds. – White Lion Publishing. London.
  • Özdemir, S., Özkan, K., & Mert, A. (2020a). An ecological perspective on climate change scenarios. Biological Diversity and Conservation, 13(3), 361-371.
  • Özdemir, S., Gülsoy, S., & Mert, A. (2020b). Predicting the effect of climate change on the potential distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty, 20(2), 133-142.
  • Päckert, M., Hering, J., Belkacem, A. A., Sun, Y. H., Hille, S., Lkhagvasuren, D. & Martens, J. (2021). A revised multilocus phylogeny of Old World sparrows (Aves: Passeridae). Vertebrate Zoology, 71, 353.
  • Papeş, M. & Gaubert, P. (2007). Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (mammalia, carnivora) across two continents. Diversity and Distributions, 13(6), 890-902. https://doi.org/10.1111/j.1472-4642.2007.00392.x
  • Pärn, H., Jensen, H., Ringsby, T., & Sæther, B. (2009). Sex‐specific fitness correlates of dispersal in a house sparrow metapopulation. Journal of Animal Ecology, 78(6), 1216-1225. https://doi.org/10.1111/j.1365-2656.2009.01597.x
  • Patterson, C. & Guerin, M. (2013). The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in canada - part i. World S Poultry Science Journal, 69(1), 17-26. https://doi.org/10.1017/s0043933913000020
  • Pautasso, M. (2012). Observed impacts of climate change on terrestrial birds in europe: an overview. Italian Journal of Zoology, 79(2), 296-314. https://doi.org/10.1080/11250003.2011.627381
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Pratiwi, I., Priyambodo, S., & Hernowo, J. (2022). Feed preference, adaptation, and role of the eurasian tree sparrows (Passer montanus l.) in urban and rural environments. Cropsaver Journal of Plant Protection, 5(2), 45. https://doi.org/10.24198/cropsaver.v5i2.41425
  • Ravinet, M., Elgvin, T., Trier, C., Aliabadian, M., Gavrilov, A., & Sætre, G. (2018). Signatures of human-commensalism in the house sparrow genome. Proceedings of the Royal Society B Biological Sciences, 285(1884), 20181246. https://doi.org/10.1098/rspb.2018.1246
  • Riyahi, S., Hammer, Ø., Arbabi, T., Sánchez, A., Roselaar, C., Aliabadian, M & Sætre, G. (2013). Beak and skull shapes of human commensal and non-commensal house sparrows Passer domesticus. BMC Evolutionary Biology, 13(1). https://doi.org/10.1186/1471-2148-13-200
  • Roberts, L., Burnett, R., Tietz, J., & Veloz, S. (2019). Recent drought and tree mortality effects on the avian community in southern sierra nevada: a glimpse of the future? Ecological Applications, 29(2). https://doi.org/10.1002/eap.1848
  • Robinson, R., Siriwardena, G., & Crick, H. (2005). Size and trends of the house sparrow Passer domesticus population in great britain. Ibis, 147(3), 552-562. https://doi.org/10.1111/j.1474-919x.2005.00427.x
  • Rodenhouse, N., Matthews, S., McFarland, K., Lambert, J., Iverson, L., Prasad, A., … & Holmes, R. (2007). Potential effects of climate change on birds of the northeast. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 517-540. https://doi.org/10.1007/s11027-007-9126-1
  • Sætre, G., Riyahi, S., Aliabadian, M., Hermansen, J., Hogner, S., Olsson, U., … & Elgvin, T. (2012). Single origin of human commensalism in the house sparrow. Journal of Evolutionary Biology, 25(4), 788-796. https://doi.org/10.1111/j.1420-9101.2012.02470.x
  • Schrey, a W., Grispo, M., Awad, M., Cook, M.B., McCoy, E.D., Mushinsky, H.R., Albayrak, T., Bensch, S., Burke, T., Butler, L.K., Dor, R., Fokidis, H.B., Jensen, H., Imboma, T., Kessler-Rios, M.M., Marzal, A., Stewart, I.R.K., Westerdahl, H., Westneat, D.F., Zehtindjiev, P., Martin, L.B. (2011). Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Mol. Ecol. 20, 1133e1143. https://doi.org/ 10.1111/j.1365-294X.2011.05001.x
  • Schrey, A. W., Grispo, M., Awad, M., Cook, M. B., McCoy, E. D., Mushinsky, H. R., Islam, S. & Martin, L. B. (2011). Broad‐scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Molecular Ecology, 20(6), 1133-1143.
  • Schrey, A., Ragsdale, A., Adams, K., Ingebretsen, N., Lee, J., Frederick, B., … & Martin, L. (2019). Evidence that kenyan house sparrows Passer domesticus invaded from multiple sites. Ibis, 161(4), 915-921. https://doi.org/10.1111/ibi.12756
  • Segan, D., Hole, D., Donatti, C., Zganȷar, C., Martin, S., Butchart, S., … & Watson, J. (2015). Considering the impact of climate change on human communities significantly alters the outcome of species and site‐based vulnerability assessments. Diversity and Distributions, 21(9), 1101-1111. https://doi.org/10.1111/ddi.12355
  • Shaw, L., Chamberlain, D., & Evans, M. (2008). The house sparrow passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. Journal of Ornithology, 149(3), 293-299. https://doi.org/10.1007/s10336-008-0285-y
  • Shochat, E., Lerman, S., & Fernández-Juricic, E. (2010). Birds in urban ecosystems: population dynamics, community structure, biodiversity, and conservation. – In: Aitkenhead-Peterson, J., Volder, A. (eds.) Urban Ecosystem Ecology 55: 75-86., American Society of Agronomy, USA
  • Smith, J., Kelly, N., & Renner, I. (2020). Validation of presence‐only models for conservation planning and the application to whales in a multiple‐use marine park. Ecological Applications, 31(1). https://doi.org/10.1002/eap.2214
  • Solberg, E., Ringsby, T., Altwegg, A., & Sæther, B. (2000). Fertile house ssparrow x tree sparrow (Passer domesticus xpasser montanus) hybrids? Journal of Ornithology, 141(1), 102-104. https://doi.org/10.1007/bf01651777
  • Steibl, S. (2020). Disentangling the environmental impact of different human disturbances: a case study on islands., 29-42. https://doi.org/10.1007/978-3-658-29541-7_4
  • Suarez-Rubio, M., Aung, T., Lin, S. S., Shwe, N. M., Hlaing, N. M., Naing, K. M., Oo, T., Sein, M. M., & Renner, S. C. (2016). Nonbreeding bird communities Along an urbanrural gradient of a tropical city in central Myanmar. – Tropical Conservation Science 9(4): 1-9. doi: 10.1177/1940082916675961.
  • Swaileh, K. M., & Sansur, R. (2006). Monitoring urban heavy metal pollution using the House Sparrow (Passer domesticus). Journal of Environmental Monitoring, 8(1), 209-213.
  • Taylor, S., Larson, E., & Harrison, R. (2015). Hybrid zones: windows on climate change. Trends in Ecology & Evolution, 30(7), 398-406. https://doi.org/10.1016/j.tree.2015.04.010
  • Terribile, L., Diniz‐Filho, J., & Marco, P. (2010). How many studies are necessary to compare niche-based models for geographic distributions? inductive reasoning may fail at the end. Brazilian Journal of Biology, 70(2), 263-269. https://doi.org/10.1590/s1519-69842010000200005
  • Tuliozi, B., Fracasso, G., Hoi, H., & Griggio, M. (2018). House sparrows’ (Passer domesticus) behaviour in a novel environment is modulated by social context and familiarity in a sex-specific manner. Frontiers in Zoology, 15(1). https://doi.org/10.1186/s12983-018-0267-8
  • Waldia, R. & Bhatt, J. (2022). Impacts of the changing housing patterns on the populations of house sparrow Passer domesticus (passeriformes: passeridae) in the rural hills of uttarakhand: a case study. Ecology Environment and Conservation, 168-174. https://doi.org/10.53550/eec.2022.v28i02s.028
  • Węgrzynowicz, A. (2012). Importance of nest sites availability for abundance and changes in number of house- and tree sparrow in warsaw. International Studies on Sparrows, 36(1), 56-65. https://doi.org/10.1515/isspar-2015-0013
  • Whale, H. & Ginn, F. (2017). In the absence of sparrows., 92-116. https://doi.org/10.2307/j.ctt1w6t9hg.10 WorldClim 2.1. Available at: [https://www.worldclim.org/] (https://www.worldclim.org/)
  • Wu, J. & Zhang, G. (2015). Can changes in the distributions of resident birds in china over the past 50 years be attributed to climate change? Ecology and Evolution, 5(11), 2215-2233. https://doi.org/10.1002/ece3.1513

Does Climate Change Affect the Potential Distribution of House Sparrows (Passer domesticus) ?

Year 2024, Volume: 10 Issue: 2, 93 - 104, 26.08.2024
https://doi.org/10.58626/menba.1523217

Abstract

Determining the results of climatic effects and fragmentation on habitats is very important. Global climate change is a threat to wildlife species, which can lead to changes in habitats and the distribution of species. Estimating the correct distribution of species and their habitats is essential for the sustainability and management of species under climate change. House Sparrow (Passer domesticus) is a common bird species belonging to the Passeridae family. This species has a wide range around the World and has been closely associated with humans for most of its existence. In this study, we used the Maximum entropy (Maxent) model to predict the potential suitable habitats for House Sparrow (Passer domesticus) under future climatic scenarios (2021-2040, 2041-2060 and 2061-2080) for Türkiye.

Thanks

Manuscript was written by expanding on the proceedings at The 3rd International Conference on Environment and Forest Conservation (ICEFC 2022).

References

  • Albayrak, T., & Pekgöz, A. K. (2021). Heavy metal effects on bird morphometry: A case study on the house sparrow Passer domesticus. Chemosphere, 276, 130056.
  • Anderson, T. R. (2006). Biology of the ubiquitous house sparrow: from genes to populations. Oxford University Press.
  • Andrew, S. & Griffith, S. (2016). Inaccuracies in the history of a well-known introduction: a case study of the australian house sparrow (Passer domesticus). Avian Research, 7(1).
  • Arab, A., Courter, J., & Zelt, J. (2016). A spatio-temporal comparison of avian migration phenology using citizen science data. Spatial Statistics, 18, 234-245.
  • Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Kühn, I., Macgregor-Fors, I., McDonnell, M., Mörtberg, U., Pyšek, P., Siebert, S., Sushinsky, J., Werner, P. & Winter, M. (2014): A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. – Proceedings of the Royal Society B: Biological Sciences 281(1780): 20133330. doi: 10.1098/rspb.2013.3330.
  • Asik, Y., & Kara, B. (2021). Variation in avian diversity in relation to plant species in urban parks of Aydin, Turkey. Applied Ecology and Environmental Research, 19(3), 2013-2035.
  • Baldock, K. C. R., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., Osgathorpe, L. M., Potts, S. G., Robertson, K. M., Scott, A. V., Stone, G. N., Vaughan, I. P., Memmott, J. (2015). Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. – Proceedings of the Royal Society B: Biological Sciences 282(1803): 20142849. doi: 10.1098/rspb.2014.2849.
  • Balwan, W. & Saba, N. (2020). Decline of house sparrow and common myna population in doda region of jammu and kashmir, india. IJBI, 02(01), 20-24. https://doi.org/10.46505/ijbi.2020.2103
  • Ben-Hamo, M., Burns, D., Bauchinger, U., Mukherjee, S., Embar, K., & Pinshow, B. (2015). Behavioural responses during feather replacement in house sparrows. Journal of Avian Biology, 47(1), 103-108. https://doi.org/10.1111/jav.00651
  • Bichet, C., Scheifler, R., Coeurdassier, M., Julliard, R., Sorci, G., & Loiseau, C. (2013). Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PloS one, 8(1), e53866.
  • Blair, R. B. (1996). Land use and avian species diversity along an urban gradient. – Ecological Applications 6(2): 506-519. doi: 10.2307/2269387.
  • Bradbury, K. (2019). Wildlife gardening: For everyone and everything. – Bloomsbury Wildlife, London Cardillo, M., Mace, G., Jones, K., Bielby, J., Bininda‐Emonds, O., Sechrest, W., … & Purvis, A. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239-1241. https://doi.org/10.1126/science.1116030
  • Del Hoyo, J., Collar, N.J. (Eds) (2016). Illustrated checklist of the birds of the world. Volume 2 Passerines. Lynx Edicions, Barcelona, 903 pp.
  • Deng, Z. (2024). Predicting the spatial distribution of the mangshan pit viper (protobothrops mangshanensis) under climate change scenarios using maxent modeling. Forests, 15(4), 723. https://doi.org/10.3390/f15040723
  • Deutsch, C., Tewksbury, J., Huey, R., Sheldon, K., Ghalambor, C., Haak, D., … & Martin, P. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668-6672. https://doi.org/10.1073/pnas.0709472105
  • Duengen, D., Burkhardt, E., & El‐Gabbas, A. (2022). Fin whale (balaenoptera physalus) distribution modeling on their nordic and barents seas feeding grounds. Marine Mammal Science, 38(4), 1583-1608. https://doi.org/10.1111/mms.12943
  • Eldridge, D., Delgado-Baquerizo, M., Quero, J., Ochoa, V., Gozalo, B., García-Palacios, P., … & Maestre, F. (2020). Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology, 57(2), 424-435. https://doi.org/10.1111/1365-2664.13540
  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A. & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29: 129–151.
  • Evcin, Ö. 2023: Can highway tunnel constructıon change the habitat selection of roe deer (Capreolus capreolus Linnaeus, 1758)?. Environmental Monitoring and Assessment, 195(12), 1410. https://doi.org/10.1007/s10661-023-12003-0
  • Fick, S.E. & R.J. Hijmans, (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
  • Gaston, K.J. (2009). Geographicrangelimitsofspecies.Proceedings. Biological Sciences⁄The Royal Society, 276, 1391–1393.
  • GBIF, (2024). The Global Biodiversity Information Facility, Occurrence record (last accessed on 15.07.2024).
  • Ghosh, S., Kim, K., & Bhattacharya, R. (2010). A survey on house sparrow population decline at bandel, west bengal, india. Journal of the Korean Earth Science Society, 31(5), 448-453. https://doi.org/10.5467/jkess.2010.31.5.448
  • Gill, F., Donsker, D., & Rasmussen, P. (Eds) (2020). IOC World Bird List (v10.1). https://doi.org/10.14344/IOC.ML.10.1 (last accessed on 20.04.2020).
  • Global Biodiversity Information Facility (GBIF). Available at: [https://www.gbif.org/] (https://www.gbif.org/)
  • Goertzen, D., Suhling, F. (2015). Central European cities maintain substantial dragonfly species richness - a chance for biodiversity conservation? – Insect Conservation and Diversity 8(3): 238-246. doi: 10.1111/icad.12102.
  • Gregory, R. D., Noble, D., Field, R., Marchant, J., Raven, M., & Gibbons, D. W. (2003). Using birds as indicators of biodiversity. Ornis hungarica, 12(13), 11-24.
  • Gushit, J. S., Turshak, L. G., Chaskda, A. A., Abba, B. R., & Nwaeze, U. P. (2016). Avian feathers as bioindicator of heavy metal pollution in urban degraded woodland.
  • Hermansen, J., Sæther, S., Elgvin, T., Borge, T., Hjelle, E., & Sætre, G. (2011). Hybrid speciation in sparrows i: phenotypic intermediacy, genetic admixture and barriers to gene flow. Molecular Ecology, 20(18), 3812-3822. https://doi.org/10.1111/j.1365-294x.2011.05183.x
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.
  • Iknayan, K. & Beissinger, S. (2020). Collapse of a desert bird community over the past century driven by climate change. Parks Stewardship Forum, 36(1). https://doi.org/10.5070/p536146409
  • Jarzyna, M., Porter, W., Maurer, B., Zuckerberg, B., & Finley, A. (2015). Landscape fragmentation affects responses of avian communities to climate change. Global Change Biology, 21(8), 2942-2953. https://doi.org/10.1111/gcb.12885
  • Jenouvrier, S. (2013). Impacts of climate change on avian populations. Global Change Biology, 19(7), 2036-2057. https://doi.org/10.1111/gcb.12195
  • Jokimäki, J., Suhonen, J., & Kaisanlahti-Jokimäki, M. (2021). Differential long-term population responses of two closely related human-associated sparrow species with respect to urbanization. Birds, 2(3), 230-249. https://doi.org/10.3390/birds2030017
  • Kaushik, T. & Gupta, R. (2018). Present scenario in respect of house-sparrows’ depleting trends and conservation efforts in and around kurukshetra, haryana, india. Environment Conservation Journal, 19(3), 59-65. https://doi.org/10.36953/ecj.2018.19307
  • Khera, N., Das, A., Srivasatava, S., & Jain, S. (2009). Habitat-wise distribution of the house sparrow (Passer domesticus) in delhi, india. Urban Ecosystems, 13(1), 147-154. https://doi.org/10.1007/s11252-009-0109-8
  • Kowarik, I., von der Lippe, M. (2018). Plant population success across urban ecosystems: A framework to inform biodiversity conservation in cities. – Journal of Applied Ecology 55(5): 2354-2361. doi: 10.1111/1365-2664.13144
  • Lemoine, N., Schaefer, H., & Böhning‐Gaese, K. (2006). Species richness of migratory birds is influenced by global climate change. Global Ecology and Biogeography, 16(1), 55-64. https://doi.org/10.1111/j.1466-8238.2006.00252.x
  • Li, X., Liu, Y., & Zhu, Y. (2022). The effects of climate change on birds and approaches to response. Iop Conference Series Earth and Environmental Science, 1011(1), 012054. https://doi.org/10.1088/1755-1315/1011/1/012054
  • Liebl, A., Schrey, A., Andrew, S.C., Sheldon, E.L., & Griffith, S.C. (2015). Invasion genetics: Lessons from a ubiquitous bird, the house sparrow Passer domesticus. Current Zoology 61: 465–476. https://doi.org/ 10.1093/czoolo/61.3.465
  • MacGregor-Fors, I., Morales‐Pérez, L., Quesada, J., & Schondube, J. (2009). Relationship between the presence of house sparrows (Passer domesticus) and neotropical bird community structure and diversity. Biological Invasions, 12(1), 87-96. https://doi.org/10.1007/s10530-009-9432-5
  • Magalhães-Júnior, A., Moura, G., Ribeiro, L., & Azevedo-Júnior, S. (2017). Potential distribution and conservation of the colobosauroides carvalhoi soares and caramaschi, 1998: a rare and endemic lizard of northeast brazil. Brazilian Journal of Biology, 77(4), 686-695. https://doi.org/10.1590/1519-6984.15815
  • Martin, T. & Maron, J. (2012). Climate impacts on bird and plant communities from altered animal–plant interactions. Nature Climate Change, 2(3), 195-200. https://doi.org/10.1038/nclimate1348
  • McKinney, M. (1997). Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics, 28(1), 495-516. https://doi.org/10.1146/annurev.ecolsys.28.1.495
  • Møller, A. (1990). Sexual behavior is related to badge size in the house sparrow Passer domesticus. Behavioral Ecology and Sociobiology, 27(1). https://doi.org/10.1007/bf00183309
  • Moss, S., & Martin, M. (2019). Urban aviary: A modern guide to city birds. – White Lion Publishing. London.
  • Özdemir, S., Özkan, K., & Mert, A. (2020a). An ecological perspective on climate change scenarios. Biological Diversity and Conservation, 13(3), 361-371.
  • Özdemir, S., Gülsoy, S., & Mert, A. (2020b). Predicting the effect of climate change on the potential distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty, 20(2), 133-142.
  • Päckert, M., Hering, J., Belkacem, A. A., Sun, Y. H., Hille, S., Lkhagvasuren, D. & Martens, J. (2021). A revised multilocus phylogeny of Old World sparrows (Aves: Passeridae). Vertebrate Zoology, 71, 353.
  • Papeş, M. & Gaubert, P. (2007). Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (mammalia, carnivora) across two continents. Diversity and Distributions, 13(6), 890-902. https://doi.org/10.1111/j.1472-4642.2007.00392.x
  • Pärn, H., Jensen, H., Ringsby, T., & Sæther, B. (2009). Sex‐specific fitness correlates of dispersal in a house sparrow metapopulation. Journal of Animal Ecology, 78(6), 1216-1225. https://doi.org/10.1111/j.1365-2656.2009.01597.x
  • Patterson, C. & Guerin, M. (2013). The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in canada - part i. World S Poultry Science Journal, 69(1), 17-26. https://doi.org/10.1017/s0043933913000020
  • Pautasso, M. (2012). Observed impacts of climate change on terrestrial birds in europe: an overview. Italian Journal of Zoology, 79(2), 296-314. https://doi.org/10.1080/11250003.2011.627381
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Pratiwi, I., Priyambodo, S., & Hernowo, J. (2022). Feed preference, adaptation, and role of the eurasian tree sparrows (Passer montanus l.) in urban and rural environments. Cropsaver Journal of Plant Protection, 5(2), 45. https://doi.org/10.24198/cropsaver.v5i2.41425
  • Ravinet, M., Elgvin, T., Trier, C., Aliabadian, M., Gavrilov, A., & Sætre, G. (2018). Signatures of human-commensalism in the house sparrow genome. Proceedings of the Royal Society B Biological Sciences, 285(1884), 20181246. https://doi.org/10.1098/rspb.2018.1246
  • Riyahi, S., Hammer, Ø., Arbabi, T., Sánchez, A., Roselaar, C., Aliabadian, M & Sætre, G. (2013). Beak and skull shapes of human commensal and non-commensal house sparrows Passer domesticus. BMC Evolutionary Biology, 13(1). https://doi.org/10.1186/1471-2148-13-200
  • Roberts, L., Burnett, R., Tietz, J., & Veloz, S. (2019). Recent drought and tree mortality effects on the avian community in southern sierra nevada: a glimpse of the future? Ecological Applications, 29(2). https://doi.org/10.1002/eap.1848
  • Robinson, R., Siriwardena, G., & Crick, H. (2005). Size and trends of the house sparrow Passer domesticus population in great britain. Ibis, 147(3), 552-562. https://doi.org/10.1111/j.1474-919x.2005.00427.x
  • Rodenhouse, N., Matthews, S., McFarland, K., Lambert, J., Iverson, L., Prasad, A., … & Holmes, R. (2007). Potential effects of climate change on birds of the northeast. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 517-540. https://doi.org/10.1007/s11027-007-9126-1
  • Sætre, G., Riyahi, S., Aliabadian, M., Hermansen, J., Hogner, S., Olsson, U., … & Elgvin, T. (2012). Single origin of human commensalism in the house sparrow. Journal of Evolutionary Biology, 25(4), 788-796. https://doi.org/10.1111/j.1420-9101.2012.02470.x
  • Schrey, a W., Grispo, M., Awad, M., Cook, M.B., McCoy, E.D., Mushinsky, H.R., Albayrak, T., Bensch, S., Burke, T., Butler, L.K., Dor, R., Fokidis, H.B., Jensen, H., Imboma, T., Kessler-Rios, M.M., Marzal, A., Stewart, I.R.K., Westerdahl, H., Westneat, D.F., Zehtindjiev, P., Martin, L.B. (2011). Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Mol. Ecol. 20, 1133e1143. https://doi.org/ 10.1111/j.1365-294X.2011.05001.x
  • Schrey, A. W., Grispo, M., Awad, M., Cook, M. B., McCoy, E. D., Mushinsky, H. R., Islam, S. & Martin, L. B. (2011). Broad‐scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Molecular Ecology, 20(6), 1133-1143.
  • Schrey, A., Ragsdale, A., Adams, K., Ingebretsen, N., Lee, J., Frederick, B., … & Martin, L. (2019). Evidence that kenyan house sparrows Passer domesticus invaded from multiple sites. Ibis, 161(4), 915-921. https://doi.org/10.1111/ibi.12756
  • Segan, D., Hole, D., Donatti, C., Zganȷar, C., Martin, S., Butchart, S., … & Watson, J. (2015). Considering the impact of climate change on human communities significantly alters the outcome of species and site‐based vulnerability assessments. Diversity and Distributions, 21(9), 1101-1111. https://doi.org/10.1111/ddi.12355
  • Shaw, L., Chamberlain, D., & Evans, M. (2008). The house sparrow passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. Journal of Ornithology, 149(3), 293-299. https://doi.org/10.1007/s10336-008-0285-y
  • Shochat, E., Lerman, S., & Fernández-Juricic, E. (2010). Birds in urban ecosystems: population dynamics, community structure, biodiversity, and conservation. – In: Aitkenhead-Peterson, J., Volder, A. (eds.) Urban Ecosystem Ecology 55: 75-86., American Society of Agronomy, USA
  • Smith, J., Kelly, N., & Renner, I. (2020). Validation of presence‐only models for conservation planning and the application to whales in a multiple‐use marine park. Ecological Applications, 31(1). https://doi.org/10.1002/eap.2214
  • Solberg, E., Ringsby, T., Altwegg, A., & Sæther, B. (2000). Fertile house ssparrow x tree sparrow (Passer domesticus xpasser montanus) hybrids? Journal of Ornithology, 141(1), 102-104. https://doi.org/10.1007/bf01651777
  • Steibl, S. (2020). Disentangling the environmental impact of different human disturbances: a case study on islands., 29-42. https://doi.org/10.1007/978-3-658-29541-7_4
  • Suarez-Rubio, M., Aung, T., Lin, S. S., Shwe, N. M., Hlaing, N. M., Naing, K. M., Oo, T., Sein, M. M., & Renner, S. C. (2016). Nonbreeding bird communities Along an urbanrural gradient of a tropical city in central Myanmar. – Tropical Conservation Science 9(4): 1-9. doi: 10.1177/1940082916675961.
  • Swaileh, K. M., & Sansur, R. (2006). Monitoring urban heavy metal pollution using the House Sparrow (Passer domesticus). Journal of Environmental Monitoring, 8(1), 209-213.
  • Taylor, S., Larson, E., & Harrison, R. (2015). Hybrid zones: windows on climate change. Trends in Ecology & Evolution, 30(7), 398-406. https://doi.org/10.1016/j.tree.2015.04.010
  • Terribile, L., Diniz‐Filho, J., & Marco, P. (2010). How many studies are necessary to compare niche-based models for geographic distributions? inductive reasoning may fail at the end. Brazilian Journal of Biology, 70(2), 263-269. https://doi.org/10.1590/s1519-69842010000200005
  • Tuliozi, B., Fracasso, G., Hoi, H., & Griggio, M. (2018). House sparrows’ (Passer domesticus) behaviour in a novel environment is modulated by social context and familiarity in a sex-specific manner. Frontiers in Zoology, 15(1). https://doi.org/10.1186/s12983-018-0267-8
  • Waldia, R. & Bhatt, J. (2022). Impacts of the changing housing patterns on the populations of house sparrow Passer domesticus (passeriformes: passeridae) in the rural hills of uttarakhand: a case study. Ecology Environment and Conservation, 168-174. https://doi.org/10.53550/eec.2022.v28i02s.028
  • Węgrzynowicz, A. (2012). Importance of nest sites availability for abundance and changes in number of house- and tree sparrow in warsaw. International Studies on Sparrows, 36(1), 56-65. https://doi.org/10.1515/isspar-2015-0013
  • Whale, H. & Ginn, F. (2017). In the absence of sparrows., 92-116. https://doi.org/10.2307/j.ctt1w6t9hg.10 WorldClim 2.1. Available at: [https://www.worldclim.org/] (https://www.worldclim.org/)
  • Wu, J. & Zhang, G. (2015). Can changes in the distributions of resident birds in china over the past 50 years be attributed to climate change? Ecology and Evolution, 5(11), 2215-2233. https://doi.org/10.1002/ece3.1513
There are 79 citations in total.

Details

Primary Language Turkish
Subjects Ecology (Other)
Journal Section Araştırmalar
Authors

Özkan Evcin 0000-0002-9019-5547

Publication Date August 26, 2024
Submission Date July 27, 2024
Acceptance Date August 6, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Evcin, Ö. (2024). İklim Değişikliği Ev Serçesinin (Passer domesticus) Potansiyel Dağılımını Değiştirmekte midir?. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(2), 93-104. https://doi.org/10.58626/menba.1523217
AMA Evcin Ö. İklim Değişikliği Ev Serçesinin (Passer domesticus) Potansiyel Dağılımını Değiştirmekte midir?. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. August 2024;10(2):93-104. doi:10.58626/menba.1523217
Chicago Evcin, Özkan. “İklim Değişikliği Ev Serçesinin (Passer Domesticus) Potansiyel Dağılımını Değiştirmekte Midir?”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10, no. 2 (August 2024): 93-104. https://doi.org/10.58626/menba.1523217.
EndNote Evcin Ö (August 1, 2024) İklim Değişikliği Ev Serçesinin (Passer domesticus) Potansiyel Dağılımını Değiştirmekte midir?. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10 2 93–104.
IEEE Ö. Evcin, “İklim Değişikliği Ev Serçesinin (Passer domesticus) Potansiyel Dağılımını Değiştirmekte midir?”, Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 10, no. 2, pp. 93–104, 2024, doi: 10.58626/menba.1523217.
ISNAD Evcin, Özkan. “İklim Değişikliği Ev Serçesinin (Passer Domesticus) Potansiyel Dağılımını Değiştirmekte Midir?”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10/2 (August 2024), 93-104. https://doi.org/10.58626/menba.1523217.
JAMA Evcin Ö. İklim Değişikliği Ev Serçesinin (Passer domesticus) Potansiyel Dağılımını Değiştirmekte midir?. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2024;10:93–104.
MLA Evcin, Özkan. “İklim Değişikliği Ev Serçesinin (Passer Domesticus) Potansiyel Dağılımını Değiştirmekte Midir?”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 10, no. 2, 2024, pp. 93-104, doi:10.58626/menba.1523217.
Vancouver Evcin Ö. İklim Değişikliği Ev Serçesinin (Passer domesticus) Potansiyel Dağılımını Değiştirmekte midir?. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2024;10(2):93-104.