Research Article
BibTex RIS Cite

Sepia officinalis’ten Kitin ve Kitosan: Ekstraksiyon ve Karakterizasyon Çalışması

Year 2024, Volume: 10 Issue: 3, 1 - 13, 28.12.2024
https://doi.org/10.58626/menba.1447172

Abstract

İskenderun balık pazarından temin edilen Sepia officinalis kaynaklı mürekkep balığı kemiği, kitin (CT) ve kitosan (CS) üretiminde kullanıldı. Hem CT hem de CS'nin kimyasal yapısı ve fiziko-kimyasal özellikleri, Fourier-dönüşümlü kızılötesi (FTIR), X-ışını difraktometre (XRD) ve Taramalı Elektron Mikroskobu (SEM) aracılığıyla kapsamlı bir şekilde karakterize edildi. Mürekkep balığı kemiğinden elde edilen CT ve CS verimleri sırasıyla %32,1 ve %72,6 olarak hesaplandı. FTIR spektrum analizi sonuçları, çeşitli bantlarda işlevsel grupların varlığını ortaya koyarak örneklerin CT ve CS olduğunu doğruladı. Deasetilasyon derecesi (DD) değeri, FTIR sonuçlarına göre %84,20 olarak belirlendi. Mürekkep balığı kemiğinden elde edilen CT'nin kristal indeks (CrI) değeri %60,13 olarak hesaplandı. SEM analizi sonuçları, CT ve CS biyopolimerleri arasındaki morfolojik farklılıkları vurguladı. Bu önemli ticari öneme sahip ve yaygın tüketilen bir tür olan S. officinalis'in kemiğinden başarıyla elde edilen bu biyopolimerler, denizel canlıların kabuklarından elde edilen sürdürülebilir ve çevre dostu malzemeler olarak kullanılabilir. Bu malzemeler, piller, mikrodalga elektronikler, ambalaj malzemeleri ve ilaç endüstrisi gibi çeşitli alanlarda alternatif ve yenilikçi çözümler sunma potansiyeline sahiptir.

Thanks

I would like to thank Cansev Genç for the support provided in laboratory studies.

References

  • Al Sagheer, F. A., Al-Sughayer, M. A., Muslim, S., & Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 77: 410–419. https://doi.org/10.1016/j.carbpol.2009.01.032
  • Alabaraoye, E., Achilonu, M., & Hester, R. (2018). Biopolymer (Chitin) from Various Marine Seashell Wastes: Isolation and Characterization. Journal of Polymers and the Environment, 26(6): 2207–2218. https://doi.org/10.1007/s10924-017-1118-y
  • Arrouze, F., Desbrieres, J., Lidrissi-hassani, S., & Tolaimate, A. (2021). Investigation of β-chitin extracted from cuttlefish: Comparison with squid β-chitin. Polymer Bulletin, 78: 1–21. https://doi.org/10.1007/s00289-020-03466-z
  • Ben Nasr, A., Walha, K., Charcosset, C., & Ben Amar, R. (2011). Removal of fluoride ions using cuttlefish bones. Journal of Fluorine Chemistry, 132(1): 57–62. https://doi.org/10.1016/j.jfluchem.2010.11.006
  • Birolli, W. G., de Moura Delezuk, J. A., & Campana-Filho, S. P. (2016). Ultrasound-assisted conversion of alpha-chitin into chitosan. Applied Acoustics, 103: 239-242.
  • Brugnerotto, J., Lizardi-Mendoza, J., Goycoolea, F., Argüelles-Monal, W., Desbrieres, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42: 3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8 Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4): 1876–1885. https://doi.org/10.1002/app.20647
  • Chandumpai, A., Singhpibulporn, N., Faroongsarng, D., & Sornprasit, P. (2004). Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species Loligo lessoniana and Loligo formosana. Carbohydrate Polymers, 58(4): 467–474. https://doi.org/10.1016/j.carbpol.2004.08.015
  • Checa, A. G., Cartwright, J. H. E., Sánchez-Almazo, I., Andrade, J. P., & Ruiz-Raya, F. (2015). The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Scientific Reports, 5(1): 11513. https://doi.org/10.1038/srep11513
  • Dahmane, E. M., Taourirte, M., Eladlani, N., & Rhazi, M. (2014). Extraction and Characterization of Chitin and Chitosan from Parapenaeus longirostris from Moroccan Local Sources. International Journal of Polymer Analysis and Characterization, 19(4): 342–351. https://doi.org/10.1080/1023666X.2014.902577
  • Demir, D., Öfkeli, F., Ceylan, S., & Bölgen, N. (2016). Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds. Journal of the Turkish Chemical Society, Section A: Chemistry, 3(3): 131–144. https://doi.org/10.18596/jotcsa.00634
  • Duysak, Ö., & Uğurlu, E. (2017). Metal accumulations in different tissues of cuttlefish (Sepia officinalis L., 1758) in the Eastern Mediterranean coasts of Turkey. Environmental Science and Pollution Research, 24(10): 9614–9623. https://doi.org/10.1007/s11356-017-8685-2
  • Duysak, Ö., & Uğurlu, E. (2020). Heavy Metal Accumulation in Different Tissues of Cuttlefish (Sepia officinalis L., 1758) in İskenderun Bay. Journal of Anatolian Environmental and Animal Sciences, 5(4): 556–562. https://doi.org/10.35229/jaes.750466
  • Duysak, Ö., Kılıç, E., Uğurlu, E., & Doğan, S. (2023). Metal toxicity risk of commercial cephalopod species and public health concerns. Regional Studies in Marine Science, 66: 103141. https://doi.org/10.1016/j.rsma.2023.103141
  • Hahn, S., & Hennecke, D. (2023). What can we learn from biodegradation of natural polymers for regulation? Environmental Sciences Europe, 35(1): 50. https://doi.org/10.1186/s12302-023-00755-y
  • Hasan, S., Boddu, V. M., Viswanath, D. S., & Ghosh, T. K. (2022). Preparation of Chitin and Chitosan. In S. Hasan, V. M. Boddu, D. S. Viswanath, & T. K. Ghosh (Eds.), Chitin and Chitosan: Science and Engineering (pp. 17–50). Springer International Publishing. https://doi.org/10.1007/978-3-031-01229-7_2
  • Hossain, M. S., Iqbal, A., Hossain, M. S., & Iqbal, A. (2014). Production and characterization of chitosan from shrimp waste. Journal of the Bangladesh Agricultural University, 12(1): 158–160. https://doi.org/10.22004/AG.ECON.209911
  • Ibitoye, E. B., Lokman, I. H., Hezmee, M. N. M., Goh, Y. M., Zuki, A. B. Z., & Jimoh, A. A. (2018). Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials, 13(2): 025009. https://doi.org/10.1088/1748-605X/aa9dde
  • Islam, Md. M., Islam, R., Mahmudul Hassan, S. M., Karim, Md. R., Rahman, M. M., Rahman, S., Nur Hossain, Md., Islam, D., Aftab Ali Shaikh, Md., & Georghiou, P. E. (2023). Carboxymethyl chitin and chitosan derivatives: Synthesis, characterization and antibacterial activity. Carbohydrate Polymer Technologies and Applications, 5: 100283. https://doi.org/10.1016/j.carpta.2023.100283
  • Islam, Md. M., Shahruzzaman, Md., Biswas, S., Nurus Sakib, Md., & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials, 5(1): 164–183. https://doi.org/10.1016/j.bioactmat.2020.01.012
  • Jung, H.-S., Kim, M. H., Shin, J. Y., Park, S. R., Jung, J.-Y., & Park, W. H. (2018). Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydrate Polymers, 193: 205–211. https://doi.org/10.1016/j.carbpol.2018.03.100
  • Kavisri, M., Abraham, M., Namasivayam, S. K. R., Aravindkumar, J., Balaji, D., Sathishkumar, R., Sigamani, S., Srinivasan, R., & Moovendhan, M. (2023). Adsorption isotherm, kinetics and response surface methodology optimization of cadmium (Cd) removal from aqueous solution by chitosan biopolymers from cephalopod waste. Journal of Environmental Management, 335: 117484. https://doi.org/10.1016/j.jenvman.2023.117484
  • Kaya, M., Erdogan, S., Mol, A., & Baran, T. (2015). Comparison of chitin structures isolated from seven Orthoptera species. International Journal of Biological Macromolecules, 72: 797–805. https://doi.org/10.1016/j.ijbiomac.2014.09.034
  • Kaya, M., Tozak, K. Ö., Baran, T., Sezen, G., & Sargin, I. (2013). Natural porous and Nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea). EXCLI Journal, 12: 503–510. https://doi.org/10.17877/DE290R-7353
  • Kumari, S., Rath, P., Annamareddy, S., & Tiwari, T. N. (2015). Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology & Innovation, 3. https://doi.org/10.1016/j.eti.2015.01.002
  • Lamarque, G., Chaussard, G., & Domard, A. (2007). Thermodynamic aspects of the heterogeneous deacetylation of β-chitin: Reaction mechanisms. Biomacromolecules, 8(6): 1942-1950.
  • Lavall, R., Assis, O., & Campanafilho, S. (2007). β-Chitin from the pens of Loligo sp.: Extraction and characterization. Bioresource Technology, 98(13): 2465–2472. https://doi.org/10.1016/j.biortech.2006.09.002
  • Le Pabic, C., Marie, A., Marie, B., Percot, A., Bonnaud-Ponticelli, L., Lopez, P. J., & Luquet, G. (2017). First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone. Journal of Proteomics, 150: 63–73. https://doi.org/10.1016/j.jprot.2016.08.015
  • Luo, Q., Wang, Y., Han, Q., Ji, L., Zhang, H., Fei, Z., & Wang, Y. (2019). Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydrate Polymers, 209: 266–275. https://doi.org/10.1016/j.carbpol.2019.01.030
  • Ma, B., Zhang, J., Mi, Y., Miao, Q., Tan, W., & Guo, Z. (2023). Preparation of imidazole acids grafted chitosan with enhanced antioxidant, antibacterial and antitumor activities. Carbohydrate Polymers, 315: 120978. https://doi.org/10.1016/j.carbpol.2023.120978
  • Nafary, A., Mousavi Nezhad, S., & Jalili, S. (2023). Extraction and characterization of chitin and chitosan from Tenebrio Molitor beetles and investigation of its antibacterial effect against Pseudomonas aeruginosa. Advanced Biomedical Research, 12(1): 96. https://doi.org/10.4103/abr.abr_205_22
  • Nessa, F., Masum, S. M., Asaduzzaman, M., Roy, S., Hossain, M., & Jahan, M. (2011). A Process for the Preparation of Chitin and Chitosan from Prawn Shell Waste. Bangladesh Journal of Scientific and Industrial Research, 45(4): 323–330. https://doi.org/10.3329/bjsir.v45i4.7330
  • Oduor-Odeto, P. M., Struszezyk, M. H., & Peter, M. G. (2005). Characterisation of Chitosan from Blowfly Larvae and Some Crustacean Species from Kenyan Marin Waters Prepared Under Different Conditions. Western Indian Ocean Journal of Marine Science, 4(1): Article 1. https://doi.org/10.4314/wiojms.v4i1.28478
  • Öğretmen, Ö. Y., Karsli, B., & Çağlak, E. (2022). Extraction and Physicochemical Characterization of Chitosan from Pink Shrimp (Parapenaeus longirostris) Shell Wastes. Journal of Agricultural Sciences, 28(3): Article 3. https://doi.org/10.15832/ankutbd.861909
  • Palpandi, C., Shanmugam, V., & Shanmugam, A. (2009). Extraction of chitin and chitosan from shell and operculum of mangrove gastropod Nerita (Dostia) crepidularia Lamarck. Nternational Journal of Medicine and Medical Sciences, 1(5): 198–205.
  • Queirós, J. P., Bartolomé, A., Piatkowski, U., Xavier, J. C., & Perales-Raya, C. (2023). Age and growth estimation of Southern Ocean squid Moroteuthopsis longimana: Can we use beaks collected from predators’ stomachs? Marine Biology, 170(1): 10. https://doi.org/10.1007/s00227-022-04156-2
  • Ramasamy, P., Subhapradha, N., Shanmugam, V., & Shanmugam, A. (2014). Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885). International Journal of Biological Macromolecules, 64: 202–212. https://doi.org/10.1016/j.ijbiomac.2013.12.008
  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7): 603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  • Rocha-Pino, Z., Shirai, K., Arias, L., & Vázquez, H. (2007). Effect of water quality and particle size on the production of chitosan from β-chitin isolated from jumbo squid processing wastes (Dosidicus gigas). Revista Mexicana de Ingeniería Química, 7(3): 299–307.
  • Rudall, K. M., & Kenchington, W. (1973). The Chitin System. Biological Reviews, 48: 597–633. https://doi.org/10.1111/j.1469-185X.1973.tb01570.x
  • Sajikumar, K. K., Laxmilatha, P., Vargheese, S., Pranav, P., Venkatesan, V., Vidya, R., Alloycious, P. S., Joy, K. M. J., & Sasikumar, G. (2023). Hawaiian flying squid Nototodarus hawaiiensis (Cephalopoda: Ommastrephidae) in the Arabian Sea: range extension, age, and growth. Marine Biodiversity, 53(1): 15. https://doi.org/10.1007/s12526-022-01325-w
  • Seedevi, P., Moovendhan, M., Vairamani, S., & Shanmugam, A. (2017). Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi. International Journal of Biological Macromolecules, 99: 519–529. https://doi.org/10.1016/j.ijbiomac.2017.03.012
  • Shushizadeh, M. R., Pour, E. M., Zare, A., & Lashkari, Z. (2015). Persian gulf β-chitin extraction from sepia pharaonis sp. Cuttlebone and preparation of its derivatives. Bioactive Carbohydrates and Dietary Fibre, 6(2): 133–142. https://doi.org/10.1016/j.bcdf.2015.09.003
  • Si Trung, T., & Bao, H. N. D. (2015). Physicochemical Properties and Antioxidant Activity of Chitin and Chitosan Prepared from Pacific White Shrimp Waste. International Journal of Carbohydrate Chemistry, 2015: 1–6. https://doi.org/10.1155/2015/706259
  • Subhapradha, N., Ramasamy, P., Shanmugam, V., Madeswaran, P., Srinivasan, A., & Shanmugam, A. (2013). Physicochemical characterisation of β-chitosan from Sepioteuthis lessoniana gladius. Food Chemistry, 141(2): 907–913. https://doi.org/10.1016/j.foodchem.2013.03.098
  • Tajika, A., Morimoto, N., & Landman, N. H. (2021). Significance of the suture line in cephalopod taxonomy revealed by 3D morphometrics in the modern nautilids Nautilus and Allonautilus. Scientific Reports, 11(1): 17114. https://doi.org/10.1038/s41598-021-96611-1
  • Takiguchi, Y. (1991a). Advances in Chitin Science, Vol. III Proceedings from the third Asia-Pacific Chitin, Chitosan Jikken manual chapter 1. In Physical properties of chitinous materials (1st ed., Vol. 3, pp. 1–7). Gihodou Shupan Kabushki Kaisha.
  • Takiguchi, Y. (1991b). Chitin, Chitosan Jikken Manual Chapter-2. In Chitin, Chitosan Jikken Manual Chapter-2 (pp. 9–17). Gihodou Shupan Kaisha.
  • Thirunavukkarasu, N., & Shanmugam, A. (2009). Extraction Of Chitin And Chitosan From Mud Crab Scylla tranquebarica (Fabricius, 1798). International Journal on Applied Bio-Engineering, 4(2): 31–33. https://doi.org/10.18000/ijabeg.10048
  • Trung, T. S., Thein-Han, W. W., Qui, N. T., Ng, C.-H., & Stevens, W. F. (2006). Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresource Technology, 97(4): 659–663. https://doi.org/10.1016/j.biortech.2005.03.023
  • Uğurlu, E., & Duysak, Ö. (2023). A study on the extraction of chitin and chitosan from the invasive sea urchin Diadema setosum from Iskenderun Bay in the Northeastern Mediterranean. Environmental Science and Pollution Research, 30(8): 21416–21424. https://doi.org/10.1007/s11356-022-23728-9
  • Uğurlu, E., Duysak, Ö., Saygılı, İ., Uğur, S., & Sayın, S., (2020). Denizel Omurgasız Canlılardan Elde Edilen Kolajenler ve Kullanım Alanları. Ecological Life Sciences, 15(1):24-35, https://doi.org/10.12739/NWSA.2020.15.1.5A0130.
  • Uğurlu, E., Duysak, Ö., & Ozcan, T. (2018). Consumer Behaviour of Cephalopod Consumption in Kilis City. 259–263.
  • Ullah, R., & Khan, I. (2023). Biotechnological Utilization of the Marine Environment for Food, Drugs, and Energy (pp. 23–46). https://doi.org/10.1007/978-981-99-0624-6_2
  • Vairamani, S., Subhapradha, N., Ramasamy, P., Raveendran, S., Srinivasan, A., & Shanmugam, A. (2013). Physicochemical Characteristics and Antioxidant Efficacy of Chitosan From The Internal Shell of Spineless Cuttlefish Sepiella inermis. Preparative Biochemistry and Biotechnology, 43(7): 696–716. https://doi.org/10.1080/10826068.2013.773339
  • Vino, B., Ramasamy, P., Shanmugam, V., & Shanmugam, A. (2012). Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848.Asian Pacific Journal of Tropical Biomedicine, 2: 334–341. https://doi.org/10.1016/S2221-1691(12)60184-1
  • Vino, B., Ramasamy, P., Vairamani, S., & Shanmugam, A. (2011). Physicochemical characterization of biopolymers chitin and chitosan extracted from squid Doryteuthis sibogae Adam, 1954 pen. International Journal of Pharma Research and Development, 2.
  • Xavier, J. C., Cherel, Y., Allcock, L., Rosa, R., Sabirov, R. M., Blicher, M. E., & Golikov, A. V. (2018). A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean. Marine Biology, 165(5): 93. https://doi.org/10.1007/s00227-018-3352-9
  • Xavier, J., & Cherel, Y. (2021). Cephalopod Beak Guide For the Southern Ocean: An update on taxonomy. Yen, M.-T., Yang, J.-H., & Mau, J.-L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75(1): 15–21. https://doi.org/10.1016/j.carbpol.2008.06.006
  • Younes, I., & Rinaudo, M. (2015). Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13(3): 1133–1174. https://doi.org/10.3390/md13031133
  • Yuan, Y., Chesnutt, B. M., Haggard, W. O., & Bumgardner, J. D. (2011). Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials, 4(8): 1399–1416. https://doi.org/10.3390/ma4081399
  • Žigrayová, D., Mikušová, V., & Mikuš, P. (2023). Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses, 15(3): 647. https://doi.org/10.3390/v15030647

Chitin and Chitosan from Sepia officinalis: Extraction and Characterization Study

Year 2024, Volume: 10 Issue: 3, 1 - 13, 28.12.2024
https://doi.org/10.58626/menba.1447172

Abstract

A cuttlebone sourced from Sepia officinalis, acquired from the Iskenderun fish market, served as the raw material for the extraction of chitin (CT) and chitosan (CS). The chemical structure and physico-chemical properties of both CT and CS were comprehensively characterized through Fourier-transform infrared (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The yields of CT and CS obtained from the cuttlebone of S. officinalis were calculated as 32.1% and 72.6%, respectively. The results of FTIR spectrum analysis revealed the presence of functional groups at various bands, confirming the samples to be CT and CS. The deacetylation degree (DD) value was determined to be 84.20% based on the FTIR results. The crystal index (CrI) of CT obtained from the cuttlebone was calculated as 60.13%. Morphological distinctions between CT and CS biopolymers were emphasized by the results of SEM analysis. The successful extraction of these biopolymers from the cuttlebone of S. officinalis, species of significant commercial importance and widespread consumption, was accomplished. These biopolymers derived from the shells of marine animals can be utilized as sustainable and environmentally friendly materials in various applications. These have the potential to offer alternative and innovative solutions in various fields such as batteries, microwave electronics, packaging materials and the pharmaceutical industry.

References

  • Al Sagheer, F. A., Al-Sughayer, M. A., Muslim, S., & Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 77: 410–419. https://doi.org/10.1016/j.carbpol.2009.01.032
  • Alabaraoye, E., Achilonu, M., & Hester, R. (2018). Biopolymer (Chitin) from Various Marine Seashell Wastes: Isolation and Characterization. Journal of Polymers and the Environment, 26(6): 2207–2218. https://doi.org/10.1007/s10924-017-1118-y
  • Arrouze, F., Desbrieres, J., Lidrissi-hassani, S., & Tolaimate, A. (2021). Investigation of β-chitin extracted from cuttlefish: Comparison with squid β-chitin. Polymer Bulletin, 78: 1–21. https://doi.org/10.1007/s00289-020-03466-z
  • Ben Nasr, A., Walha, K., Charcosset, C., & Ben Amar, R. (2011). Removal of fluoride ions using cuttlefish bones. Journal of Fluorine Chemistry, 132(1): 57–62. https://doi.org/10.1016/j.jfluchem.2010.11.006
  • Birolli, W. G., de Moura Delezuk, J. A., & Campana-Filho, S. P. (2016). Ultrasound-assisted conversion of alpha-chitin into chitosan. Applied Acoustics, 103: 239-242.
  • Brugnerotto, J., Lizardi-Mendoza, J., Goycoolea, F., Argüelles-Monal, W., Desbrieres, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42: 3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8 Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4): 1876–1885. https://doi.org/10.1002/app.20647
  • Chandumpai, A., Singhpibulporn, N., Faroongsarng, D., & Sornprasit, P. (2004). Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species Loligo lessoniana and Loligo formosana. Carbohydrate Polymers, 58(4): 467–474. https://doi.org/10.1016/j.carbpol.2004.08.015
  • Checa, A. G., Cartwright, J. H. E., Sánchez-Almazo, I., Andrade, J. P., & Ruiz-Raya, F. (2015). The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Scientific Reports, 5(1): 11513. https://doi.org/10.1038/srep11513
  • Dahmane, E. M., Taourirte, M., Eladlani, N., & Rhazi, M. (2014). Extraction and Characterization of Chitin and Chitosan from Parapenaeus longirostris from Moroccan Local Sources. International Journal of Polymer Analysis and Characterization, 19(4): 342–351. https://doi.org/10.1080/1023666X.2014.902577
  • Demir, D., Öfkeli, F., Ceylan, S., & Bölgen, N. (2016). Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds. Journal of the Turkish Chemical Society, Section A: Chemistry, 3(3): 131–144. https://doi.org/10.18596/jotcsa.00634
  • Duysak, Ö., & Uğurlu, E. (2017). Metal accumulations in different tissues of cuttlefish (Sepia officinalis L., 1758) in the Eastern Mediterranean coasts of Turkey. Environmental Science and Pollution Research, 24(10): 9614–9623. https://doi.org/10.1007/s11356-017-8685-2
  • Duysak, Ö., & Uğurlu, E. (2020). Heavy Metal Accumulation in Different Tissues of Cuttlefish (Sepia officinalis L., 1758) in İskenderun Bay. Journal of Anatolian Environmental and Animal Sciences, 5(4): 556–562. https://doi.org/10.35229/jaes.750466
  • Duysak, Ö., Kılıç, E., Uğurlu, E., & Doğan, S. (2023). Metal toxicity risk of commercial cephalopod species and public health concerns. Regional Studies in Marine Science, 66: 103141. https://doi.org/10.1016/j.rsma.2023.103141
  • Hahn, S., & Hennecke, D. (2023). What can we learn from biodegradation of natural polymers for regulation? Environmental Sciences Europe, 35(1): 50. https://doi.org/10.1186/s12302-023-00755-y
  • Hasan, S., Boddu, V. M., Viswanath, D. S., & Ghosh, T. K. (2022). Preparation of Chitin and Chitosan. In S. Hasan, V. M. Boddu, D. S. Viswanath, & T. K. Ghosh (Eds.), Chitin and Chitosan: Science and Engineering (pp. 17–50). Springer International Publishing. https://doi.org/10.1007/978-3-031-01229-7_2
  • Hossain, M. S., Iqbal, A., Hossain, M. S., & Iqbal, A. (2014). Production and characterization of chitosan from shrimp waste. Journal of the Bangladesh Agricultural University, 12(1): 158–160. https://doi.org/10.22004/AG.ECON.209911
  • Ibitoye, E. B., Lokman, I. H., Hezmee, M. N. M., Goh, Y. M., Zuki, A. B. Z., & Jimoh, A. A. (2018). Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials, 13(2): 025009. https://doi.org/10.1088/1748-605X/aa9dde
  • Islam, Md. M., Islam, R., Mahmudul Hassan, S. M., Karim, Md. R., Rahman, M. M., Rahman, S., Nur Hossain, Md., Islam, D., Aftab Ali Shaikh, Md., & Georghiou, P. E. (2023). Carboxymethyl chitin and chitosan derivatives: Synthesis, characterization and antibacterial activity. Carbohydrate Polymer Technologies and Applications, 5: 100283. https://doi.org/10.1016/j.carpta.2023.100283
  • Islam, Md. M., Shahruzzaman, Md., Biswas, S., Nurus Sakib, Md., & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials, 5(1): 164–183. https://doi.org/10.1016/j.bioactmat.2020.01.012
  • Jung, H.-S., Kim, M. H., Shin, J. Y., Park, S. R., Jung, J.-Y., & Park, W. H. (2018). Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydrate Polymers, 193: 205–211. https://doi.org/10.1016/j.carbpol.2018.03.100
  • Kavisri, M., Abraham, M., Namasivayam, S. K. R., Aravindkumar, J., Balaji, D., Sathishkumar, R., Sigamani, S., Srinivasan, R., & Moovendhan, M. (2023). Adsorption isotherm, kinetics and response surface methodology optimization of cadmium (Cd) removal from aqueous solution by chitosan biopolymers from cephalopod waste. Journal of Environmental Management, 335: 117484. https://doi.org/10.1016/j.jenvman.2023.117484
  • Kaya, M., Erdogan, S., Mol, A., & Baran, T. (2015). Comparison of chitin structures isolated from seven Orthoptera species. International Journal of Biological Macromolecules, 72: 797–805. https://doi.org/10.1016/j.ijbiomac.2014.09.034
  • Kaya, M., Tozak, K. Ö., Baran, T., Sezen, G., & Sargin, I. (2013). Natural porous and Nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea). EXCLI Journal, 12: 503–510. https://doi.org/10.17877/DE290R-7353
  • Kumari, S., Rath, P., Annamareddy, S., & Tiwari, T. N. (2015). Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology & Innovation, 3. https://doi.org/10.1016/j.eti.2015.01.002
  • Lamarque, G., Chaussard, G., & Domard, A. (2007). Thermodynamic aspects of the heterogeneous deacetylation of β-chitin: Reaction mechanisms. Biomacromolecules, 8(6): 1942-1950.
  • Lavall, R., Assis, O., & Campanafilho, S. (2007). β-Chitin from the pens of Loligo sp.: Extraction and characterization. Bioresource Technology, 98(13): 2465–2472. https://doi.org/10.1016/j.biortech.2006.09.002
  • Le Pabic, C., Marie, A., Marie, B., Percot, A., Bonnaud-Ponticelli, L., Lopez, P. J., & Luquet, G. (2017). First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone. Journal of Proteomics, 150: 63–73. https://doi.org/10.1016/j.jprot.2016.08.015
  • Luo, Q., Wang, Y., Han, Q., Ji, L., Zhang, H., Fei, Z., & Wang, Y. (2019). Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydrate Polymers, 209: 266–275. https://doi.org/10.1016/j.carbpol.2019.01.030
  • Ma, B., Zhang, J., Mi, Y., Miao, Q., Tan, W., & Guo, Z. (2023). Preparation of imidazole acids grafted chitosan with enhanced antioxidant, antibacterial and antitumor activities. Carbohydrate Polymers, 315: 120978. https://doi.org/10.1016/j.carbpol.2023.120978
  • Nafary, A., Mousavi Nezhad, S., & Jalili, S. (2023). Extraction and characterization of chitin and chitosan from Tenebrio Molitor beetles and investigation of its antibacterial effect against Pseudomonas aeruginosa. Advanced Biomedical Research, 12(1): 96. https://doi.org/10.4103/abr.abr_205_22
  • Nessa, F., Masum, S. M., Asaduzzaman, M., Roy, S., Hossain, M., & Jahan, M. (2011). A Process for the Preparation of Chitin and Chitosan from Prawn Shell Waste. Bangladesh Journal of Scientific and Industrial Research, 45(4): 323–330. https://doi.org/10.3329/bjsir.v45i4.7330
  • Oduor-Odeto, P. M., Struszezyk, M. H., & Peter, M. G. (2005). Characterisation of Chitosan from Blowfly Larvae and Some Crustacean Species from Kenyan Marin Waters Prepared Under Different Conditions. Western Indian Ocean Journal of Marine Science, 4(1): Article 1. https://doi.org/10.4314/wiojms.v4i1.28478
  • Öğretmen, Ö. Y., Karsli, B., & Çağlak, E. (2022). Extraction and Physicochemical Characterization of Chitosan from Pink Shrimp (Parapenaeus longirostris) Shell Wastes. Journal of Agricultural Sciences, 28(3): Article 3. https://doi.org/10.15832/ankutbd.861909
  • Palpandi, C., Shanmugam, V., & Shanmugam, A. (2009). Extraction of chitin and chitosan from shell and operculum of mangrove gastropod Nerita (Dostia) crepidularia Lamarck. Nternational Journal of Medicine and Medical Sciences, 1(5): 198–205.
  • Queirós, J. P., Bartolomé, A., Piatkowski, U., Xavier, J. C., & Perales-Raya, C. (2023). Age and growth estimation of Southern Ocean squid Moroteuthopsis longimana: Can we use beaks collected from predators’ stomachs? Marine Biology, 170(1): 10. https://doi.org/10.1007/s00227-022-04156-2
  • Ramasamy, P., Subhapradha, N., Shanmugam, V., & Shanmugam, A. (2014). Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885). International Journal of Biological Macromolecules, 64: 202–212. https://doi.org/10.1016/j.ijbiomac.2013.12.008
  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7): 603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  • Rocha-Pino, Z., Shirai, K., Arias, L., & Vázquez, H. (2007). Effect of water quality and particle size on the production of chitosan from β-chitin isolated from jumbo squid processing wastes (Dosidicus gigas). Revista Mexicana de Ingeniería Química, 7(3): 299–307.
  • Rudall, K. M., & Kenchington, W. (1973). The Chitin System. Biological Reviews, 48: 597–633. https://doi.org/10.1111/j.1469-185X.1973.tb01570.x
  • Sajikumar, K. K., Laxmilatha, P., Vargheese, S., Pranav, P., Venkatesan, V., Vidya, R., Alloycious, P. S., Joy, K. M. J., & Sasikumar, G. (2023). Hawaiian flying squid Nototodarus hawaiiensis (Cephalopoda: Ommastrephidae) in the Arabian Sea: range extension, age, and growth. Marine Biodiversity, 53(1): 15. https://doi.org/10.1007/s12526-022-01325-w
  • Seedevi, P., Moovendhan, M., Vairamani, S., & Shanmugam, A. (2017). Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi. International Journal of Biological Macromolecules, 99: 519–529. https://doi.org/10.1016/j.ijbiomac.2017.03.012
  • Shushizadeh, M. R., Pour, E. M., Zare, A., & Lashkari, Z. (2015). Persian gulf β-chitin extraction from sepia pharaonis sp. Cuttlebone and preparation of its derivatives. Bioactive Carbohydrates and Dietary Fibre, 6(2): 133–142. https://doi.org/10.1016/j.bcdf.2015.09.003
  • Si Trung, T., & Bao, H. N. D. (2015). Physicochemical Properties and Antioxidant Activity of Chitin and Chitosan Prepared from Pacific White Shrimp Waste. International Journal of Carbohydrate Chemistry, 2015: 1–6. https://doi.org/10.1155/2015/706259
  • Subhapradha, N., Ramasamy, P., Shanmugam, V., Madeswaran, P., Srinivasan, A., & Shanmugam, A. (2013). Physicochemical characterisation of β-chitosan from Sepioteuthis lessoniana gladius. Food Chemistry, 141(2): 907–913. https://doi.org/10.1016/j.foodchem.2013.03.098
  • Tajika, A., Morimoto, N., & Landman, N. H. (2021). Significance of the suture line in cephalopod taxonomy revealed by 3D morphometrics in the modern nautilids Nautilus and Allonautilus. Scientific Reports, 11(1): 17114. https://doi.org/10.1038/s41598-021-96611-1
  • Takiguchi, Y. (1991a). Advances in Chitin Science, Vol. III Proceedings from the third Asia-Pacific Chitin, Chitosan Jikken manual chapter 1. In Physical properties of chitinous materials (1st ed., Vol. 3, pp. 1–7). Gihodou Shupan Kabushki Kaisha.
  • Takiguchi, Y. (1991b). Chitin, Chitosan Jikken Manual Chapter-2. In Chitin, Chitosan Jikken Manual Chapter-2 (pp. 9–17). Gihodou Shupan Kaisha.
  • Thirunavukkarasu, N., & Shanmugam, A. (2009). Extraction Of Chitin And Chitosan From Mud Crab Scylla tranquebarica (Fabricius, 1798). International Journal on Applied Bio-Engineering, 4(2): 31–33. https://doi.org/10.18000/ijabeg.10048
  • Trung, T. S., Thein-Han, W. W., Qui, N. T., Ng, C.-H., & Stevens, W. F. (2006). Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresource Technology, 97(4): 659–663. https://doi.org/10.1016/j.biortech.2005.03.023
  • Uğurlu, E., & Duysak, Ö. (2023). A study on the extraction of chitin and chitosan from the invasive sea urchin Diadema setosum from Iskenderun Bay in the Northeastern Mediterranean. Environmental Science and Pollution Research, 30(8): 21416–21424. https://doi.org/10.1007/s11356-022-23728-9
  • Uğurlu, E., Duysak, Ö., Saygılı, İ., Uğur, S., & Sayın, S., (2020). Denizel Omurgasız Canlılardan Elde Edilen Kolajenler ve Kullanım Alanları. Ecological Life Sciences, 15(1):24-35, https://doi.org/10.12739/NWSA.2020.15.1.5A0130.
  • Uğurlu, E., Duysak, Ö., & Ozcan, T. (2018). Consumer Behaviour of Cephalopod Consumption in Kilis City. 259–263.
  • Ullah, R., & Khan, I. (2023). Biotechnological Utilization of the Marine Environment for Food, Drugs, and Energy (pp. 23–46). https://doi.org/10.1007/978-981-99-0624-6_2
  • Vairamani, S., Subhapradha, N., Ramasamy, P., Raveendran, S., Srinivasan, A., & Shanmugam, A. (2013). Physicochemical Characteristics and Antioxidant Efficacy of Chitosan From The Internal Shell of Spineless Cuttlefish Sepiella inermis. Preparative Biochemistry and Biotechnology, 43(7): 696–716. https://doi.org/10.1080/10826068.2013.773339
  • Vino, B., Ramasamy, P., Shanmugam, V., & Shanmugam, A. (2012). Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848.Asian Pacific Journal of Tropical Biomedicine, 2: 334–341. https://doi.org/10.1016/S2221-1691(12)60184-1
  • Vino, B., Ramasamy, P., Vairamani, S., & Shanmugam, A. (2011). Physicochemical characterization of biopolymers chitin and chitosan extracted from squid Doryteuthis sibogae Adam, 1954 pen. International Journal of Pharma Research and Development, 2.
  • Xavier, J. C., Cherel, Y., Allcock, L., Rosa, R., Sabirov, R. M., Blicher, M. E., & Golikov, A. V. (2018). A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean. Marine Biology, 165(5): 93. https://doi.org/10.1007/s00227-018-3352-9
  • Xavier, J., & Cherel, Y. (2021). Cephalopod Beak Guide For the Southern Ocean: An update on taxonomy. Yen, M.-T., Yang, J.-H., & Mau, J.-L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75(1): 15–21. https://doi.org/10.1016/j.carbpol.2008.06.006
  • Younes, I., & Rinaudo, M. (2015). Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13(3): 1133–1174. https://doi.org/10.3390/md13031133
  • Yuan, Y., Chesnutt, B. M., Haggard, W. O., & Bumgardner, J. D. (2011). Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials, 4(8): 1399–1416. https://doi.org/10.3390/ma4081399
  • Žigrayová, D., Mikušová, V., & Mikuš, P. (2023). Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses, 15(3): 647. https://doi.org/10.3390/v15030647
There are 61 citations in total.

Details

Primary Language English
Subjects Water Invertebrates
Journal Section Araştırmalar
Authors

Erkan Uğurlu 0000-0001-8940-8421

Önder Duysak 0000-0002-7484-3102

Publication Date December 28, 2024
Submission Date March 4, 2024
Acceptance Date July 31, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Uğurlu, E., & Duysak, Ö. (2024). Chitin and Chitosan from Sepia officinalis: Extraction and Characterization Study. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(3), 1-13. https://doi.org/10.58626/menba.1447172
AMA Uğurlu E, Duysak Ö. Chitin and Chitosan from Sepia officinalis: Extraction and Characterization Study. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. December 2024;10(3):1-13. doi:10.58626/menba.1447172
Chicago Uğurlu, Erkan, and Önder Duysak. “Chitin and Chitosan from Sepia Officinalis: Extraction and Characterization Study”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10, no. 3 (December 2024): 1-13. https://doi.org/10.58626/menba.1447172.
EndNote Uğurlu E, Duysak Ö (December 1, 2024) Chitin and Chitosan from Sepia officinalis: Extraction and Characterization Study. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10 3 1–13.
IEEE E. Uğurlu and Ö. Duysak, “Chitin and Chitosan from Sepia officinalis: Extraction and Characterization Study”, Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 10, no. 3, pp. 1–13, 2024, doi: 10.58626/menba.1447172.
ISNAD Uğurlu, Erkan - Duysak, Önder. “Chitin and Chitosan from Sepia Officinalis: Extraction and Characterization Study”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10/3 (December 2024), 1-13. https://doi.org/10.58626/menba.1447172.
JAMA Uğurlu E, Duysak Ö. Chitin and Chitosan from Sepia officinalis: Extraction and Characterization Study. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2024;10:1–13.
MLA Uğurlu, Erkan and Önder Duysak. “Chitin and Chitosan from Sepia Officinalis: Extraction and Characterization Study”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 10, no. 3, 2024, pp. 1-13, doi:10.58626/menba.1447172.
Vancouver Uğurlu E, Duysak Ö. Chitin and Chitosan from Sepia officinalis: Extraction and Characterization Study. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2024;10(3):1-13.