Research Article
BibTex RIS Cite

Bartın Rüzgar Hızları: İklim Değişikliği ve Yerleşimlerin Etkileri

Year 2024, Volume: 10 Issue: 3, 223 - 230, 28.12.2024
https://doi.org/10.58626/menba.1570941

Abstract

Bu çalışma, Bartın ilinin aylık rüzgar hızlarını analiz etmeyi ve bu verileri yerel planlama süreçlerine entegre etmeyi amaçlamaktadır. Bartın’ın Karadeniz Bölgesi’ndeki coğrafi konumu, zengin doğal kaynakları ve çeşitli iklim özellikleri, rüzgar analizi için önemli bir araştırma alanı sunmaktadır. Rüzgar, hem enerji üretiminde hem de insan konforunda kritik bir rol oynamakta ve hızla büyüyen yenilenebilir enerji kaynaklarından biri olarak öne çıkmaktadır. Bu bağlamda, Bartın’ın kıyı konumu ve rüzgârlı iklimi nedeniyle yüksek rüzgar enerjisi potansiyeline sahip olduğu değerlendirilmektedir. Bartın’ın rüzgar dinamiklerini belirlemek ve bu dinamiklerin yerleşimler üzerindeki etkilerini incelemek amacıyla aylık rüzgar hızı verilerinin analizi yapılmıştır. Çalışmada, meteorolojik veriler kullanılarak rüzgar hızlarının mevsimsel değişimleri değerlendirilmiş ve bu verilerin biyoklimatik konfor ile olan ilişkisi incelenmiştir. Elde edilen sonuçlar, yerel yönetimlerin sürdürülebilir enerji kullanımı ve kentsel planlama süreçlerinde rüzgar dinamiklerini dikkate almasına yardımcı olacaktır. Sonuç olarak, bu çalışma Bartın ilinin rüzgar hızlarını analiz etmenin önemini vurgulamakta ve yerel planlama süreçlerine rüzgar enerjisi potansiyelinin entegrasyonu ile biyoklimatik konforu artırmaya yönelik öneriler sunmaktadır.

Thanks

Acknowledgments I would like to express my gratitude to Ondokuz Mayis University for providing administrative and technical support, as well as the materials used in the experiments. I acknowledge the valuable contributions of Ondokuz Mayis University

References

  • Argin, M., Yerci, V., Erdogan, N., Kucuksari, S., & Cali, U. (2019). Exploring the offshore wind energy potential of Turkey based on multi-criteria site selection. Energy Strategy Reviews, 23, 33-46.
  • Aydin, N. Y., Kentel, E., & Duzgun, H. S. (2013). GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy conversion and management, 70, 90-106.
  • Bolat, İ., & Şensoy, H. (2023). Analysis of some meteorological data and their variation trends in three provinces of the Western Black Sea Region between 2012 and 2021. Forestist, 73(3), 220-230.
  • Demirtaş, A., Yıldız, E., & Aksoy, T. (2020). Türkiye’de rüzgar enerjisi potansiyelinin değerlendirilmesi: Kıyı bölgelerindeki fırsatlar ve engeller. Enerji ve Çevre Araştırmaları Dergisi, 12(3), 215–232. Emmanuel, R. (2012). An urban approach to climate sensitive design: Strategies for the tropics. Taylor & Francis.
  • Genç, M. S., Karipoğlu, F., Koca, K., & Azgın, Ş. T. (2021). Suitable site selection for offshore wind farms in Turkey’s seas: GIS-MCDM based approach. Earth Science Informatics, 14(3), 1213-1225.
  • Givoni, B. (1998). Climate considerations in building and urban design. John Wiley & Sons.
  • Gómez, F., Tamarit, N., & Jabaloyes, J. (2001). Green zones, bioclimatics studies and human comfort in the future development of urban planning. Landscape and urban planning, 55(3), 151-161.
  • Grimmond, S. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173(1), 83-88.
  • Heisler, G. M., & Dewalle, D. R. (1988). Effects of windbreak structure on wind flow. Agriculture, Ecosystems & Environment, 22(1), 41-69.
  • Hepbasli, A., & Ozgener, O. (2004). A review on the development of wind energy in Turkey. Renewable and Sustainable Energy Reviews, 8(3), 257-276.
  • Hsieh, C. M., & Huang, H. C. (2016). Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers, Environment and Urban Systems, 57, 130-143.
  • Höppe, P. (1999). The physiological equivalent temperature – A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71–75. https://doi.org/10.1007/s004840050118
  • Ilkiliç, C., & Aydin, H. (2015). Wind power potential and usage in the coastal regions of Turkey. Renewable and Sustainable Energy Reviews, 44, 78-86.
  • İlkiliç, C. (2012). Wind energy and assessment of wind energy potential in Turkey. Renewable and Sustainable Energy Reviews, 16(2), 1165-1173.
  • IRENA. (2021). Renewable Power Generation Costs in 2021. International Renewable Energy Agency. International Renewable Energy Agency (IRENA). (2021). Renewable capacity statistics 2021. IRENA Publications. Retrieved from https://www.irena.org/publications
  • Kaplan, Y. A. (2015). Overview of wind energy in the world and assessment of current wind energy policies in Turkey. Renewable and Sustainable Energy Reviews, 43, 562-568.
  • Kaygusuz, K. (2002). Environmental impacts of energy utilisation and renewable energy policies in Turkey. Energy Policy, 30(8), 689-698.
  • Liu, Y., Cheng, P., Chen, P., & Zhang, S. (2020). Detection of wind corridors based on “Climatopes”: a study in central Ji’nan. Theoretical and Applied Climatology, 142, 869-884.
  • Liu, X., Huang, B., Li, R., Zhang, J., Gou, Q., Zhou, T., & Huang, Z. (2022). Wind environment assessment and planning of urban natural ventilation corridors using GIS: Shenzhen as a case study. Urban Climate, 42, 101091.
  • Mastrorillo, M., Licker, R., Bohra-Mishra, P., Fagiolo, G., Estes, L. D., & Oppenheimer, M. (2016). The influence of climate variability on internal migration flows in South Africa. Global Environmental Change, 39, 155-169.
  • Ng, E. (2009). Policies and technical guidelines for urban planning of high-density cities – Air ventilation assessment (AVA) of Hong Kong. Building and Environment, 44(7), 1478–1488. https://doi.org/10.1016/j.buildenv.2008.06.013
  • Núñez-Peiró, M., Sanchez, C. S. G., & González, F. J. N. (2021). Hourly evolution of intra-urban temperature variability across the local climate zones. The case of Madrid. Urban Climate, 39, 100921. https://doi.org/10.1016/j.uclim.2021.100921
  • Oke, T. R. (1987). Boundary Layer Climates. Routledge.
  • Olgyay, V. (1963). Design with climate: Bioclimatic approach to architectural regionalism. Princeton University Press.
  • Ren, C., Yang, R., Cheng, C., Xing, P., Fang, X., Zhang, S., ... & Ng, E. (2018). Creating breathing cities by adopting urban ventilation assessment and wind corridor plan–The implementation in Chinese cities. Journal of Wind Engineering and Industrial Aerodynamics, 182, 170-188.
  • Sung, U. J., Eum, J. H., Son, J. M., & Oh, J. H. (2021). Planning strategies of wind corridor forests utilizing the properties of cold air. Land, 10(6), 607.
  • Ucar, A., & Balo, F. (2010). Assessment of wind power potential for turbine installation in coastal areas of Turkey. Renewable and Sustainable Energy Reviews, 14(7), 1901-1912.
  • Yaman, B., & Ertuğrul, M. (2020). Change-point detection and trend analysis in monthly, seasonal and annual air temperature and precipitation series in Bartın province in the western Black Sea region of Turkey. Geology, Geophysics and Environment, 46(3), 223-223.
  • Zeren Cetin, I., & Sevik, H. (2020). Investigation of the relationship between bioclimatic comfort and land use by using GIS and RS techniques in Trabzon. Environmental monitoring and assessment, 192, 1-14.
  • Zeren Cetin, I., Varol, T., & Ozel, H. B. (2023a). A geographic information systems and remote sensing–based approach to assess urban micro-climate change and its impact on human health in Bartin, Turkey. Environmental Monitoring and Assessment, 195(5), 540.
  • Zeren Cetin, I., Varol, T., Ozel, H. B., & Sevik, H. (2023b). The effects of climate on land use/cover: a case study in Turkey by using remote sensing data. Environmental Science and Pollution Research, 30(3), 5688-5699.

Wind Speeds of Bartın: Impacts of Climate Change and Settlements

Year 2024, Volume: 10 Issue: 3, 223 - 230, 28.12.2024
https://doi.org/10.58626/menba.1570941

Abstract

This study aims to analyze the monthly wind speeds for the province of Bartın and to integrate this data into local planning processes. The geographical location of Bartın in the Black Sea Region, its rich natural resources, and various climatic features provide an important research area for wind analysis. Wind plays a critical role in both energy production and human comfort, standing out as one of the fastest-growing renewable energy sources. In this context, Bartın has high wind energy potential due to its coastal location and windy climate. The analysis of monthly wind speed data was conducted to determine the wind dynamics of Bartın and the effects of these dynamics on settlements. In the study, seasonal variations of wind speeds were evaluated using meteorological data, and the relationship of this data with bioclimatic comfort was examined. The results obtained will assist local authorities in considering wind dynamics in sustainable energy use and urban planning. In conclusion, this study highlights the importance of analyzing wind speeds for Bartın province and presents recommendations for enhancing bioclimatic comfort through the integration of wind energy potential into local planning processes.

Thanks

Acknowledgments I would like to express my gratitude to Ondokuz Mayis University for providing administrative and technical support, as well as the materials used in the experiments. I acknowledge the valuable contributions of Ondokuz Mayis University

References

  • Argin, M., Yerci, V., Erdogan, N., Kucuksari, S., & Cali, U. (2019). Exploring the offshore wind energy potential of Turkey based on multi-criteria site selection. Energy Strategy Reviews, 23, 33-46.
  • Aydin, N. Y., Kentel, E., & Duzgun, H. S. (2013). GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy conversion and management, 70, 90-106.
  • Bolat, İ., & Şensoy, H. (2023). Analysis of some meteorological data and their variation trends in three provinces of the Western Black Sea Region between 2012 and 2021. Forestist, 73(3), 220-230.
  • Demirtaş, A., Yıldız, E., & Aksoy, T. (2020). Türkiye’de rüzgar enerjisi potansiyelinin değerlendirilmesi: Kıyı bölgelerindeki fırsatlar ve engeller. Enerji ve Çevre Araştırmaları Dergisi, 12(3), 215–232. Emmanuel, R. (2012). An urban approach to climate sensitive design: Strategies for the tropics. Taylor & Francis.
  • Genç, M. S., Karipoğlu, F., Koca, K., & Azgın, Ş. T. (2021). Suitable site selection for offshore wind farms in Turkey’s seas: GIS-MCDM based approach. Earth Science Informatics, 14(3), 1213-1225.
  • Givoni, B. (1998). Climate considerations in building and urban design. John Wiley & Sons.
  • Gómez, F., Tamarit, N., & Jabaloyes, J. (2001). Green zones, bioclimatics studies and human comfort in the future development of urban planning. Landscape and urban planning, 55(3), 151-161.
  • Grimmond, S. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173(1), 83-88.
  • Heisler, G. M., & Dewalle, D. R. (1988). Effects of windbreak structure on wind flow. Agriculture, Ecosystems & Environment, 22(1), 41-69.
  • Hepbasli, A., & Ozgener, O. (2004). A review on the development of wind energy in Turkey. Renewable and Sustainable Energy Reviews, 8(3), 257-276.
  • Hsieh, C. M., & Huang, H. C. (2016). Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers, Environment and Urban Systems, 57, 130-143.
  • Höppe, P. (1999). The physiological equivalent temperature – A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71–75. https://doi.org/10.1007/s004840050118
  • Ilkiliç, C., & Aydin, H. (2015). Wind power potential and usage in the coastal regions of Turkey. Renewable and Sustainable Energy Reviews, 44, 78-86.
  • İlkiliç, C. (2012). Wind energy and assessment of wind energy potential in Turkey. Renewable and Sustainable Energy Reviews, 16(2), 1165-1173.
  • IRENA. (2021). Renewable Power Generation Costs in 2021. International Renewable Energy Agency. International Renewable Energy Agency (IRENA). (2021). Renewable capacity statistics 2021. IRENA Publications. Retrieved from https://www.irena.org/publications
  • Kaplan, Y. A. (2015). Overview of wind energy in the world and assessment of current wind energy policies in Turkey. Renewable and Sustainable Energy Reviews, 43, 562-568.
  • Kaygusuz, K. (2002). Environmental impacts of energy utilisation and renewable energy policies in Turkey. Energy Policy, 30(8), 689-698.
  • Liu, Y., Cheng, P., Chen, P., & Zhang, S. (2020). Detection of wind corridors based on “Climatopes”: a study in central Ji’nan. Theoretical and Applied Climatology, 142, 869-884.
  • Liu, X., Huang, B., Li, R., Zhang, J., Gou, Q., Zhou, T., & Huang, Z. (2022). Wind environment assessment and planning of urban natural ventilation corridors using GIS: Shenzhen as a case study. Urban Climate, 42, 101091.
  • Mastrorillo, M., Licker, R., Bohra-Mishra, P., Fagiolo, G., Estes, L. D., & Oppenheimer, M. (2016). The influence of climate variability on internal migration flows in South Africa. Global Environmental Change, 39, 155-169.
  • Ng, E. (2009). Policies and technical guidelines for urban planning of high-density cities – Air ventilation assessment (AVA) of Hong Kong. Building and Environment, 44(7), 1478–1488. https://doi.org/10.1016/j.buildenv.2008.06.013
  • Núñez-Peiró, M., Sanchez, C. S. G., & González, F. J. N. (2021). Hourly evolution of intra-urban temperature variability across the local climate zones. The case of Madrid. Urban Climate, 39, 100921. https://doi.org/10.1016/j.uclim.2021.100921
  • Oke, T. R. (1987). Boundary Layer Climates. Routledge.
  • Olgyay, V. (1963). Design with climate: Bioclimatic approach to architectural regionalism. Princeton University Press.
  • Ren, C., Yang, R., Cheng, C., Xing, P., Fang, X., Zhang, S., ... & Ng, E. (2018). Creating breathing cities by adopting urban ventilation assessment and wind corridor plan–The implementation in Chinese cities. Journal of Wind Engineering and Industrial Aerodynamics, 182, 170-188.
  • Sung, U. J., Eum, J. H., Son, J. M., & Oh, J. H. (2021). Planning strategies of wind corridor forests utilizing the properties of cold air. Land, 10(6), 607.
  • Ucar, A., & Balo, F. (2010). Assessment of wind power potential for turbine installation in coastal areas of Turkey. Renewable and Sustainable Energy Reviews, 14(7), 1901-1912.
  • Yaman, B., & Ertuğrul, M. (2020). Change-point detection and trend analysis in monthly, seasonal and annual air temperature and precipitation series in Bartın province in the western Black Sea region of Turkey. Geology, Geophysics and Environment, 46(3), 223-223.
  • Zeren Cetin, I., & Sevik, H. (2020). Investigation of the relationship between bioclimatic comfort and land use by using GIS and RS techniques in Trabzon. Environmental monitoring and assessment, 192, 1-14.
  • Zeren Cetin, I., Varol, T., & Ozel, H. B. (2023a). A geographic information systems and remote sensing–based approach to assess urban micro-climate change and its impact on human health in Bartin, Turkey. Environmental Monitoring and Assessment, 195(5), 540.
  • Zeren Cetin, I., Varol, T., Ozel, H. B., & Sevik, H. (2023b). The effects of climate on land use/cover: a case study in Turkey by using remote sensing data. Environmental Science and Pollution Research, 30(3), 5688-5699.
There are 31 citations in total.

Details

Primary Language English
Subjects Sustainability and Energy, Remote Sensing , Physical Geography and Environmental Geology (Other), Climatology, Climate Change Science (Other)
Journal Section Araştırmalar
Authors

İlknur Zeren Çetin 0000-0003-3908-0370

Publication Date December 28, 2024
Submission Date October 21, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Zeren Çetin, İ. (2024). Wind Speeds of Bartın: Impacts of Climate Change and Settlements. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(3), 223-230. https://doi.org/10.58626/menba.1570941
AMA Zeren Çetin İ. Wind Speeds of Bartın: Impacts of Climate Change and Settlements. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. December 2024;10(3):223-230. doi:10.58626/menba.1570941
Chicago Zeren Çetin, İlknur. “Wind Speeds of Bartın: Impacts of Climate Change and Settlements”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10, no. 3 (December 2024): 223-30. https://doi.org/10.58626/menba.1570941.
EndNote Zeren Çetin İ (December 1, 2024) Wind Speeds of Bartın: Impacts of Climate Change and Settlements. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10 3 223–230.
IEEE İ. Zeren Çetin, “Wind Speeds of Bartın: Impacts of Climate Change and Settlements”, Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 10, no. 3, pp. 223–230, 2024, doi: 10.58626/menba.1570941.
ISNAD Zeren Çetin, İlknur. “Wind Speeds of Bartın: Impacts of Climate Change and Settlements”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 10/3 (December 2024), 223-230. https://doi.org/10.58626/menba.1570941.
JAMA Zeren Çetin İ. Wind Speeds of Bartın: Impacts of Climate Change and Settlements. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2024;10:223–230.
MLA Zeren Çetin, İlknur. “Wind Speeds of Bartın: Impacts of Climate Change and Settlements”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 10, no. 3, 2024, pp. 223-30, doi:10.58626/menba.1570941.
Vancouver Zeren Çetin İ. Wind Speeds of Bartın: Impacts of Climate Change and Settlements. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2024;10(3):223-30.