Araştırma Makalesi
BibTex RIS Kaynak Göster

Can the Google search engine be used to monitor and predict the spread of the Covid-19 pandemic in Turkey?

Yıl 2021, Cilt: 14 Sayı: 3, 520 - 531, 15.12.2021
https://doi.org/10.26559/mersinsbd.842118

Öz

Aim: The Covid-19 is the first pandemic encountered in the digital age, and it is thought that digital health solutions may play an important role in monitoring, managing this outbreak and conducting predictions about the pandemic. At this point, it is stated that online search engines such as Google, which produce real-time internet data, provide information about the behavior of individuals and is among the digital health solutions, can be used to predict and monitor the spread of the pandemic. Accordingly, this study was aimed to examine the availability of the Google search engine in predicting and monitoring the spread of the Covid-19 pandemic in Turkey. Method: Time lag relationship between the scores obtained from Google Trends for searches on Covid-19 symptoms via Google and the number of Covid-19 cases reported daily in Turkey was examined by Cross-Correlation analysis. Results: As a result of the study, it was determined that the highest interest in the keywords "cough", "high fever", "shortness of breath", "sore throat" and "nasal congestion", which are among the symptoms of Covid-19, occurred about 2-3 weeks before the daily number of Covid-19 cases peaked. It was determined that the correlation coefficients showed a positive relationship and the results were statistically significant. Conclusion: The keywords "cough", "high fever", "shortness of breath", "sore throat", and " nasal congestion", which have a higher correlation score compared to other keywords, can be used to predict and monitor the spread of the Covid-19 pandemic in Turkey.

Kaynakça

  • 1. Sağlık Bakanlığı. Covid-19 (Sars-Cov-2 Enfeksiyonu) Genel Bilgiler, Epidemioloji ve Tanı. Ankara: Bilimsel Danışma Kurulu Çalışması. 2020a.
  • 2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382(8):727-733.
  • 3. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395(10223):514-523.
  • 4. WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. Erişim yeri:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it, Erişim tarihi: 11.11.2020.
  • 5. WHO. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Erişim yeri:https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020, Erişim tarihi: 11.11.2020.
  • 6. WHO. WHO Coronavirus Disease (COVID-19) Dashboard. Erişim yeri:https://covid19.who.int/, Erişim tarihi: 11.11.2020.
  • 7. Sağlık Bakanlığı. Genel Koronavirüs Tablosu. Erişim yeri:https://covid19.saglik.gov.tr/TR-66935/genel-koronavirus-tablosu.html, Erişim tarihi: 11.11.2020.
  • 8. Lippi G, Mattiuzzi C, Cervellin G. Google search volume predicts the emergence of COVID-19 outbreaks. Acta Biomed 2020;91(3):1-5.
  • 9. Mattiuzzi C, Lippi G. Which lessons shall we learn from the 2019 novel coronavirus outbreak? Ann Transl Med 2020;8(3):48-51.
  • 10. Mahmood S, Hasan K, Colder Carras M, Labrique A. Global Preparedness Against COVID-19: We Must Leverage the Power of Digital Health. JMIR Public Health and Surveillance 2020;6(2):1-7.
  • 11. Fagherazzi G, Goetzinger C, Rashid MA, Aguayo GA, Huiart L. Digital health strategies to fight COVID-19 worldwide: challenges, recommendations, and a call for papers. Journal of Medical Internet Research 2020;22(6):1-10.
  • 12. Ali SA, Arif TB, Maab H, Baloch M, Manazir S, Jawed F, Ochani RK. Global Interest in Telehealth During COVID-19 Pandemic: An Analysis of Google Trends™. Cureus 2020;12(9).
  • 13. Higgins TS, Wu AW, Sharma D, Illing EA, Rubel K, Ting JY, Alliance SF. Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: Infodemiology Study. JMIR public health and surveillance 2020;6(2):1-13.
  • 14. Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection—harnessing the Web for public health surveillance. N Engl J Med 2009;360(21):2153.
  • 15. Santangelo OE, Provenzano S, Piazza D, Giordano D, Calamusa G, Firenze A. Digital epidemiology: assessment of measles infection through Google Trends mechanism in Italy. Ann Ig 2019;31:385-391.
  • 16. Shin SY, Seo DW, An J, Kwak H, Kim SH, Gwack J, Jo MW. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea. Scientific reports 2016;6:1-7.
  • 17. StatCounter. Search Engine Market Share Worldwide - October 2020. Erişim yeri:https://gs.statcounter.com/search-engine-market-share, Erişim tarihi: 14.11.2020.
  • 18. Google. Google Trendler verileri hakkında SSS. Erişim yeri:https://support.google.com/trends/answer/4365533?hl=tr&ref_topic=6248052, Erişim tarihi: 15.11.2020.
  • 19. Mavragani A, Ochoa G. Google Trends in infodemiology and infoveillance: methodology framework. JMIR public health and surveillance 2019;5(2):1-15.
  • 20. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature 2009;457(7232):1012-1014.
  • 21. Wilson N, Mason K, Tobias M, Peacey M, Huang QS, Baker M. Interpreting “Google Flu Trends” data for pandemic H1N1 influenza: the New Zealand experience. Eurosurveillance 2009;14(44):1-3.
  • 22. Majumder MS, Santillana M, Mekaru SR, McGinnis DP, Khan K, Brownstein JS. Utilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015-2016 Colombian Zika virus disease outbreak. JMIR public health and surveillance 2016;2(1):1-10.
  • 23. Husnayain A, Fuad A, Lazuardi L. Correlation between Google Trends on dengue fever and national surveillance report in Indonesia. Global Health Action 2019;12(1):1-8.
  • 24. Yuan X, Xu J, Hussain S, Wang H, Gao N, Zhang L. Trends and prediction in daily incidence and deaths of COVID-19 in the United States: a search-interest based model. medRxiv 2020.
  • 25. Bilgi Teknolojileri ve İletişim Kurumu. Bakan Yardımcısı Sayan: Salgın Sürecinde İnternet Kullanımı Arttı. Erişim yeri:https://www.btk.gov.tr/haberler/bakan-yardimcisi-sayan-salgin-surecinde-internet-kullanimi-artti, Erişim tarihi: 15.11.2020.
  • 26. Cohen J. Data Usage Has Increased 47 Percent During COVID-19 Quarantine. Erişim yeri:https://medium.com/pcmag-access/data-usage-has-increased-47-percent-during-covid-19-quarantine-5b56caac6235, Erişim tarihi: 15.11.2020.
  • 27. Zhao X, Fan J, Basnyat I, Hu B. Online Health Information Seeking Using “# COVID-19 Patient Seeking Help” on Weibo in Wuhan, China: Descriptive Study. Journal of Medical Internet Research 2020;22(10):1-13.
  • 28. Strzelecki A. The second worldwide wave of interest in coronavirus since the COVID-19 outbreaks in South Korea, Italy and Iran: A Google Trends study. Brain Behav Immun 2020;88:950-951.
  • 29. Sağlık Bakanlığı. Covid-19, Grip, Soğuk Algınlığı ve Mevsimsel Alerjilerin Belirtileri Arasındaki Farklar. Erişim yeri:https://covid19.saglik.gov.tr/Eklenti/38845/0/covid-19belirtilerarasindakifarklarafisa4pdf.pdf?_tag1=99B315EB87B0CD457EEB56A6A33F5AB6474591CE Erişim tarihi: 22.11.2020.
  • 30. Donar GB. Google arama hacmi verileri ile Türkiye’de hastalık farkındalık günlerinin etkinliğinin değerlendirilmesi. Mersin Üniversitesi Sağlık Bilimleri Dergisi 2020;13(2):177-188.
  • 31. T.C. Cumhurbaşkanlığı Dijital Dönüşüm Ofisi. Koronavirüs Covid-19 Dünya Haritası. Erişim yeri:https://corona.cbddo.gov.tr/Home/History, Erişim tarihi: 22.11.2020.
  • 32. SAGE Publishing. How-to Guide for IBM® SPSS® Statistics Software: Introduction. Erişim yeri:https://methods.sagepub.com/dataset/howtoguide/tscorrelation-in-aqs-2017, Erişim tarihi: 22.11.2020.
  • 33. Liu C. The Sensitivity of a Test Based on Spearman's Rho in Cross-Correlation Change Point Problems. 2015. Erişim yeri: https://digitalcommons.georgiasouthern.edu/etd/1336.
  • 34. Hayran M, Hayran M. Sağlık araştırmaları için temel istatistik. Ankara: Omega Araştırma. 2018.
  • 35. Li C, Chen LJ, Chen X, Zhang M, Pang CP, Chen H. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Eurosurveillance 2020;25(10):1-5.
  • 36. Kurian SJ, Bhatti AUR, Alvi MA, et al. Correlations Between COVID-19 Cases and Google Trends Data in the United States: A State-by-State Analysis. Mayo Clin Proc 2020;95(11):2370-2381.
  • 37. Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis 2009;49(10):1557-1564.
  • 38. Venkatesh U, Gandhi PA. Prediction of COVID-19 Outbreaks Using Google Trends in India: A Retrospective Analysis. Healthcare informatics research 2020;26(3):175-184.
  • 39. Rajan A, Sharaf R, Brown RS, Sharaiha RZ, Lebwohl B, Mahadev S. Association of search query interest in gastrointestinal symptoms With COVID-19 diagnosis in the united states: infodemiology study. JMIR public health and surveillance 2020;6(3):1-6.
  • 40. Effenberger M, Kronbichler A, Shin JI, Mayer G, Tilg H, Perco P. Association of the COVID-19 pandemic with internet search volumes: a google trendstm analysis. International Journal of Int J Infect Dis 2020;95:192-197.
  • 41. Jimenez A, Estevez-Reboredo RM, Santed MA, Ramos V. COVID-19 symptom Google search surges, precede local incidence surges: evidence from Spain. Journal of medical Internet research 2020.

Google arama motoru Türkiye’de Covid-19 salgınının yayılımının izlenmesinde ve tahmininde kullanılabilir mi?

Yıl 2021, Cilt: 14 Sayı: 3, 520 - 531, 15.12.2021
https://doi.org/10.26559/mersinsbd.842118

Öz

Amaç: Covid-19 salgını dijital çağda karşılaşılan ilk salgındır ve dijital sağlık çözümlerinin bu salgının izlenmesinde, yönetiminde ve salgına ilişkin tahminler yürütülmesinde önemli rol oynayabileceği düşünülmektedir. Bu noktada, gerçek zamanlı internet verileri üreten, bireylerin davranışlarına ilişkin bilgi sağlayan ve dijital sağlık çözümleri arasında yer alan Google gibi çevrimiçi arama motorlarının; salgının yayılımının tahmin edilmesinde ve izlenmesinde kullanılabileceği belirtilmektedir. Bu doğrultuda bu çalışmada, Google arama motorunun Türkiye’de Covid-19 salgınının yayılımının tahmin edilmesinde ve izlenmesinde kullanılabilirliğinin incelenmesi amaçlanmıştır. Gereç ve Yöntem: Türkiye’de Google üzerinden Covid-19 belirtileri ile ilgili yapılan aramalara ait Google Trends’ten elde edilen skorlar ile günlük bildirilen Covid-19 vaka sayıları arasındaki gecikmeli ilişki Çapraz Korelasyon analizi ile incelenmiştir. Bulgular: Çalışma sonucunda, Covid-19 belirtileri arasında yer alan “öksürük”, “yüksek ateş”, “nefes darlığı”, “boğaz ağrısı” ve “burun akıntısı” anahtar kelimelerine olan en yüksek ilginin, günlük Covid-19 vaka sayısının pik yapmasından yaklaşık 2-3 hafta önce gerçekleştiği, korelasyon katsayılarının iyi derecede ilişki gösterdiği ve sonuçların istatistiki açıdan anlamlı olduğu tespit edilmiştir. Sonuç: Daha yüksek korelasyon skoruna sahip olan “öksürük”, “yüksek ateş”, “nefes darlığı”, “boğaz ağrısı” ve “burun akıntısı” anahtar kelimeleri Türkiye’de Covid-19 salgınının yayılımının tahmin edilmesinde ve izlenmesinde kullanılabilir. 

Kaynakça

  • 1. Sağlık Bakanlığı. Covid-19 (Sars-Cov-2 Enfeksiyonu) Genel Bilgiler, Epidemioloji ve Tanı. Ankara: Bilimsel Danışma Kurulu Çalışması. 2020a.
  • 2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382(8):727-733.
  • 3. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395(10223):514-523.
  • 4. WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. Erişim yeri:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it, Erişim tarihi: 11.11.2020.
  • 5. WHO. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Erişim yeri:https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020, Erişim tarihi: 11.11.2020.
  • 6. WHO. WHO Coronavirus Disease (COVID-19) Dashboard. Erişim yeri:https://covid19.who.int/, Erişim tarihi: 11.11.2020.
  • 7. Sağlık Bakanlığı. Genel Koronavirüs Tablosu. Erişim yeri:https://covid19.saglik.gov.tr/TR-66935/genel-koronavirus-tablosu.html, Erişim tarihi: 11.11.2020.
  • 8. Lippi G, Mattiuzzi C, Cervellin G. Google search volume predicts the emergence of COVID-19 outbreaks. Acta Biomed 2020;91(3):1-5.
  • 9. Mattiuzzi C, Lippi G. Which lessons shall we learn from the 2019 novel coronavirus outbreak? Ann Transl Med 2020;8(3):48-51.
  • 10. Mahmood S, Hasan K, Colder Carras M, Labrique A. Global Preparedness Against COVID-19: We Must Leverage the Power of Digital Health. JMIR Public Health and Surveillance 2020;6(2):1-7.
  • 11. Fagherazzi G, Goetzinger C, Rashid MA, Aguayo GA, Huiart L. Digital health strategies to fight COVID-19 worldwide: challenges, recommendations, and a call for papers. Journal of Medical Internet Research 2020;22(6):1-10.
  • 12. Ali SA, Arif TB, Maab H, Baloch M, Manazir S, Jawed F, Ochani RK. Global Interest in Telehealth During COVID-19 Pandemic: An Analysis of Google Trends™. Cureus 2020;12(9).
  • 13. Higgins TS, Wu AW, Sharma D, Illing EA, Rubel K, Ting JY, Alliance SF. Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: Infodemiology Study. JMIR public health and surveillance 2020;6(2):1-13.
  • 14. Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection—harnessing the Web for public health surveillance. N Engl J Med 2009;360(21):2153.
  • 15. Santangelo OE, Provenzano S, Piazza D, Giordano D, Calamusa G, Firenze A. Digital epidemiology: assessment of measles infection through Google Trends mechanism in Italy. Ann Ig 2019;31:385-391.
  • 16. Shin SY, Seo DW, An J, Kwak H, Kim SH, Gwack J, Jo MW. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea. Scientific reports 2016;6:1-7.
  • 17. StatCounter. Search Engine Market Share Worldwide - October 2020. Erişim yeri:https://gs.statcounter.com/search-engine-market-share, Erişim tarihi: 14.11.2020.
  • 18. Google. Google Trendler verileri hakkında SSS. Erişim yeri:https://support.google.com/trends/answer/4365533?hl=tr&ref_topic=6248052, Erişim tarihi: 15.11.2020.
  • 19. Mavragani A, Ochoa G. Google Trends in infodemiology and infoveillance: methodology framework. JMIR public health and surveillance 2019;5(2):1-15.
  • 20. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature 2009;457(7232):1012-1014.
  • 21. Wilson N, Mason K, Tobias M, Peacey M, Huang QS, Baker M. Interpreting “Google Flu Trends” data for pandemic H1N1 influenza: the New Zealand experience. Eurosurveillance 2009;14(44):1-3.
  • 22. Majumder MS, Santillana M, Mekaru SR, McGinnis DP, Khan K, Brownstein JS. Utilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015-2016 Colombian Zika virus disease outbreak. JMIR public health and surveillance 2016;2(1):1-10.
  • 23. Husnayain A, Fuad A, Lazuardi L. Correlation between Google Trends on dengue fever and national surveillance report in Indonesia. Global Health Action 2019;12(1):1-8.
  • 24. Yuan X, Xu J, Hussain S, Wang H, Gao N, Zhang L. Trends and prediction in daily incidence and deaths of COVID-19 in the United States: a search-interest based model. medRxiv 2020.
  • 25. Bilgi Teknolojileri ve İletişim Kurumu. Bakan Yardımcısı Sayan: Salgın Sürecinde İnternet Kullanımı Arttı. Erişim yeri:https://www.btk.gov.tr/haberler/bakan-yardimcisi-sayan-salgin-surecinde-internet-kullanimi-artti, Erişim tarihi: 15.11.2020.
  • 26. Cohen J. Data Usage Has Increased 47 Percent During COVID-19 Quarantine. Erişim yeri:https://medium.com/pcmag-access/data-usage-has-increased-47-percent-during-covid-19-quarantine-5b56caac6235, Erişim tarihi: 15.11.2020.
  • 27. Zhao X, Fan J, Basnyat I, Hu B. Online Health Information Seeking Using “# COVID-19 Patient Seeking Help” on Weibo in Wuhan, China: Descriptive Study. Journal of Medical Internet Research 2020;22(10):1-13.
  • 28. Strzelecki A. The second worldwide wave of interest in coronavirus since the COVID-19 outbreaks in South Korea, Italy and Iran: A Google Trends study. Brain Behav Immun 2020;88:950-951.
  • 29. Sağlık Bakanlığı. Covid-19, Grip, Soğuk Algınlığı ve Mevsimsel Alerjilerin Belirtileri Arasındaki Farklar. Erişim yeri:https://covid19.saglik.gov.tr/Eklenti/38845/0/covid-19belirtilerarasindakifarklarafisa4pdf.pdf?_tag1=99B315EB87B0CD457EEB56A6A33F5AB6474591CE Erişim tarihi: 22.11.2020.
  • 30. Donar GB. Google arama hacmi verileri ile Türkiye’de hastalık farkındalık günlerinin etkinliğinin değerlendirilmesi. Mersin Üniversitesi Sağlık Bilimleri Dergisi 2020;13(2):177-188.
  • 31. T.C. Cumhurbaşkanlığı Dijital Dönüşüm Ofisi. Koronavirüs Covid-19 Dünya Haritası. Erişim yeri:https://corona.cbddo.gov.tr/Home/History, Erişim tarihi: 22.11.2020.
  • 32. SAGE Publishing. How-to Guide for IBM® SPSS® Statistics Software: Introduction. Erişim yeri:https://methods.sagepub.com/dataset/howtoguide/tscorrelation-in-aqs-2017, Erişim tarihi: 22.11.2020.
  • 33. Liu C. The Sensitivity of a Test Based on Spearman's Rho in Cross-Correlation Change Point Problems. 2015. Erişim yeri: https://digitalcommons.georgiasouthern.edu/etd/1336.
  • 34. Hayran M, Hayran M. Sağlık araştırmaları için temel istatistik. Ankara: Omega Araştırma. 2018.
  • 35. Li C, Chen LJ, Chen X, Zhang M, Pang CP, Chen H. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Eurosurveillance 2020;25(10):1-5.
  • 36. Kurian SJ, Bhatti AUR, Alvi MA, et al. Correlations Between COVID-19 Cases and Google Trends Data in the United States: A State-by-State Analysis. Mayo Clin Proc 2020;95(11):2370-2381.
  • 37. Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis 2009;49(10):1557-1564.
  • 38. Venkatesh U, Gandhi PA. Prediction of COVID-19 Outbreaks Using Google Trends in India: A Retrospective Analysis. Healthcare informatics research 2020;26(3):175-184.
  • 39. Rajan A, Sharaf R, Brown RS, Sharaiha RZ, Lebwohl B, Mahadev S. Association of search query interest in gastrointestinal symptoms With COVID-19 diagnosis in the united states: infodemiology study. JMIR public health and surveillance 2020;6(3):1-6.
  • 40. Effenberger M, Kronbichler A, Shin JI, Mayer G, Tilg H, Perco P. Association of the COVID-19 pandemic with internet search volumes: a google trendstm analysis. International Journal of Int J Infect Dis 2020;95:192-197.
  • 41. Jimenez A, Estevez-Reboredo RM, Santed MA, Ramos V. COVID-19 symptom Google search surges, precede local incidence surges: evidence from Spain. Journal of medical Internet research 2020.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Mürsel Tirgil 0000-0002-7271-1923

Ercan Çulha 0000-0001-6932-4917

Şenol Demirci 0000-0001-8552-8151

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 16 Aralık 2020
Kabul Tarihi 22 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 14 Sayı: 3

Kaynak Göster

APA Tirgil, M., Çulha, E., & Demirci, Ş. (2021). Google arama motoru Türkiye’de Covid-19 salgınının yayılımının izlenmesinde ve tahmininde kullanılabilir mi?. Mersin Üniversitesi Sağlık Bilimleri Dergisi, 14(3), 520-531. https://doi.org/10.26559/mersinsbd.842118
AMA Tirgil M, Çulha E, Demirci Ş. Google arama motoru Türkiye’de Covid-19 salgınının yayılımının izlenmesinde ve tahmininde kullanılabilir mi?. Mersin Univ Saglık Bilim Derg. Aralık 2021;14(3):520-531. doi:10.26559/mersinsbd.842118
Chicago Tirgil, Mürsel, Ercan Çulha, ve Şenol Demirci. “Google Arama Motoru Türkiye’de Covid-19 salgınının yayılımının Izlenmesinde Ve Tahmininde kullanılabilir Mi?”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14, sy. 3 (Aralık 2021): 520-31. https://doi.org/10.26559/mersinsbd.842118.
EndNote Tirgil M, Çulha E, Demirci Ş (01 Aralık 2021) Google arama motoru Türkiye’de Covid-19 salgınının yayılımının izlenmesinde ve tahmininde kullanılabilir mi?. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14 3 520–531.
IEEE M. Tirgil, E. Çulha, ve Ş. Demirci, “Google arama motoru Türkiye’de Covid-19 salgınının yayılımının izlenmesinde ve tahmininde kullanılabilir mi?”, Mersin Univ Saglık Bilim Derg, c. 14, sy. 3, ss. 520–531, 2021, doi: 10.26559/mersinsbd.842118.
ISNAD Tirgil, Mürsel vd. “Google Arama Motoru Türkiye’de Covid-19 salgınının yayılımının Izlenmesinde Ve Tahmininde kullanılabilir Mi?”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14/3 (Aralık 2021), 520-531. https://doi.org/10.26559/mersinsbd.842118.
JAMA Tirgil M, Çulha E, Demirci Ş. Google arama motoru Türkiye’de Covid-19 salgınının yayılımının izlenmesinde ve tahmininde kullanılabilir mi?. Mersin Univ Saglık Bilim Derg. 2021;14:520–531.
MLA Tirgil, Mürsel vd. “Google Arama Motoru Türkiye’de Covid-19 salgınının yayılımının Izlenmesinde Ve Tahmininde kullanılabilir Mi?”. Mersin Üniversitesi Sağlık Bilimleri Dergisi, c. 14, sy. 3, 2021, ss. 520-31, doi:10.26559/mersinsbd.842118.
Vancouver Tirgil M, Çulha E, Demirci Ş. Google arama motoru Türkiye’de Covid-19 salgınının yayılımının izlenmesinde ve tahmininde kullanılabilir mi?. Mersin Univ Saglık Bilim Derg. 2021;14(3):520-31.

MEÜ Sağlık Bilimleri Dergisi Doç.Dr. Gönül Aslan'ın Editörlüğünde Mersin Üniversitesi Sağlık Bilimleri Enstitüsüne bağlı olarak 2008 yılında yayımlanmaya başlanmıştır. Prof.Dr. Gönül Aslan Mart 2015 tarihinde Başeditörlük görevine Prof.Dr. Caferi Tayyar Şaşmaz'a devretmiştir. 01 Ocak 2023 tarihinde Prof.Dr. C. Tayyar Şaşmaz Başeditörlük görevini Prof.Dr. Özlem İzci Ay'a devretmiştir. 

Yılda üç sayı olarak (Nisan - Ağustos - Aralık) yayımlanan dergi multisektöryal hakemli bir bilimsel dergidir. Dergide araştırma makaleleri yanında derleme, olgu sunumu ve editöre mektup tipinde bilimsel yazılar yayımlanmaktadır. Yayın hayatına başladığı günden beri eposta yoluyla yayın alan ve hem online hem de basılı olarak yayımlanan dergimiz, Mayıs 2014 sayısından itibaren sadece online olarak yayımlanmaya başlamıştır. TÜBİTAK-ULAKBİM Dergi Park ile Nisan 2015 tarihinde yapılan Katılım Sözleşmesi sonrasında online yayın kabul ve değerlendirme sürecine geçmiştir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 16 Kasım 2011'dan beri Türkiye Atıf Dizini tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 2016 birinci sayıdan itibaren ULAKBİM Tıp Veri Tabanı tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 02 Ekim 2019'dan beri DOAJ tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 23 Mart 2021'den beri EBSCO tarafından indekslenmektedir.


Dergimiz açık erişim politikasını benimsemiş olup, dergimizde makale başvuru, değerlendirme ve yayınlanma aşamasında ücret talep edilmemektedir. Dergimizde yayımlanan makalelerin tamamına ücretsiz olarak Arşivden erişilebilmektedir.

154561545815459   

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı  ile lisanslanmıştır.