Research Article
BibTex RIS Cite

Türkiye GSYH büyümesinin MIDAS ile şimdi tahmini

Year 2024, Volume: 51 Issue: 1, 75 - 103, 28.06.2024

Abstract

GSYH büyümesi ekonominin durumunu ve potansiyelini gösteren önemli bir gösterge olarak algılanmaktadır ve ekonomik birimler büyüme oranlarını yakın şekilde takip etmektedir. Ancak pek çok ülkede GSYH istatistikleri hem çeyreklik sıklıkta, hem de oldukça gecikmeli olarak açıklanmaktadır. Bu durum ekonomistleri geçmiş fakat henüz istatistiği açıklanmamış yakın dönemin “şimdi tahmin”lerini yapmaya yönlendirmiştir. Bu konuda geniş bir iktisat yazını oluşmaya başlamıştır ve çok sayıda yeni teknik geliştirilmiştir.
Bu çalışmada, Türkiye GSYH büyümesinin şimdi tahmini bu alanda yeni geliştirilen ve sıklıkla kullanılmaya başlanan tahmin tekniklerinden MIDAS (karma veri örnekleme-mixed data sampling) teknikleriyle yapılmaktır. MIDAS, çeyreklik veriyi daha sık yayımlanan aylık, haftalık, hatta günlük veriler aynı denklemde kullanılarak tahmin etme imkanı vermektedir. Çalışmamızda temel MIDAS modellerinin statik faktör modelleri ile genişletilmiş bir hali olan FADL-MIDAS (Faktör Otoregresif Gecikmesi Dağıtılmış-MIDAS) denklemi kurulmuştur ve ARMA ve köprü modelleri ile karşılaştırılmıştır. FADL-MIDAS modeli iki aşamada tahmin edilmektedir. Birinci aşamada reel ekonomiye ve finansal kesime ait çok sayıda verinin faktörleri statik temel bileşenler yöntemi (principal components analysis) ile bulunmuştur. Buradan elde edilen temel bileşenler, bağımlı değişkenin gecikmeli değerleri ile birlikte denklemde kullanılmış ve denklem doğrusal olmayan en küçük kareler yöntemi ile tahmin edilmiştir.
Analiz sonuçları Türkiye GSYH büyümesinin tahmininde kendi gecikmeli değerleri ile reel kesime ait aylık sıklıkta açıklanan cari dengenin, kapasite kullanım oranının, cari işlemler hesabı hizmet gelirleri kaleminin, ihracatın, işsizlik oranının, istihdam oranının, otomobil üretim rakamlarının, reel kurların, sanayi üretim endeksinin ve seyahat gelirlerinin temel bileşenlerinin en iyi sonuçları verdiğini göstermektedir. Analiz sonuçları FADL-MIDAS modelinin MIDAS, köprü ve ARMA modellerinin hepsinden daha iyi tahmin performansı gösterdiğine işaret etmektedir.

References

  • AKKOYUN, H. Ç. ve GÜNAY, M. (2012), “Nowcasting Turkish GDP Growth”, CBRT Working Paper No:12/33.
  • ANDREOU, E., GHYSELS, E., KOURTELLOS, A. (2010), “Regression models with mixed sampling frequencies”, Journal of Economics, 158(2), 246–261.
  • ANDREOU, E., GHYSELS, E., KOURTELLOS, A. (2013), “Should macroeconomic forecasters use daily financial data and how?”, Journal of Business Economics and Statistics, 31(2), 240–251.
  • BAFFIGI, A., GOLINELLI, R., PARIGI, G. (2002), “Real-time GDP Forecasting in the Euro Area”, Bank of Italy Economic Working Papers, No. 456.
  • BANBURA, M., GIANNONE, D., MODUGNO, M., & REICHLIN, L. (2013), “Now-casting and the real-time data flow”, içinde: Handbook of Economic Forecasting, Vol. 2. (Ed.), G. Elliott and A. Timmermann (pp. 195–237). Amsterdam: Elsevier-North Holland.
  • BARRO, R.J. (1990), “Goverment Spending in a Simple Model of Endogenous Growth”, Journal of Political Economy, 98(5), 103-126.
  • BAUMOL, W. J., (1986), “Productivity Growth, Convergence, and Welfare: What the Long-run Data Show”, American Economic Review, 76, 1072-85.
  • BERNANKE, B. and BOIVIN, J. (2003), “Monetary policy in a data-rich environment”, Journal of Monetary Economics, 50, 525–546.
  • BOIVIN, J. and NG, S. (2005), “Understanding and comparing factor-based forecasts”, International Journal of Central Banking, 3, 117–151.
  • BOK, B., CARATELLI, D., GIANNONE, D., SBORDONE, A. M., & TAMBALOTTI, A. (2018), Macroeconomic nowcasting and forecasting with big data”, Annual Review of Economics, 10, 615–643.
  • CEPNİ, O., GÜNEY, E., SWANSON, N. R. (2019), “Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors”, Journal of Forecasting, 39, 18–36.
  • CHERNIS, T., SEKKEL, R. (2017), “A dynamic factor model for nowcasting Canadian GDP Growth”, Empirical Economics, 53, 217–234.
  • CLEMENTS, M. ve GALVÃO, A. (2008), “Macroeconomic forecasting with mixed-frequency data: forecasting output growth in the United States”, Journal of Business & Economic Statistics, 26, 546–554.
  • CLEMENTS, M. ve GALVÃO, A. (2009), “Forecasting US output growth using leading indicators: an appraisal using MIDAS models”, Journal of Applied Econometrics, 24, 1187–1206.
  • CONNOR, G., AND R. A. KORAJCZYK (1986): “Performance measurement with the arbitrage pricing theory. A new framework for analysis,” Journal of Financial Economics, 15, 373–394.
  • D’AGOSTINO A, GIANNONE D (2012), “Comparing alternative predictors based on large-panel factor models”, Oxford Bulletin of Economics and Statistics, 74(2), 306–326.
  • DELAJARA, M., ALVAREZ, F. H., TIRADO, A. R. (2016), “Nowcasting Mexico’s Short-Term GDP Growth in Real Time : A Factor Model versus Professional Forecasters”, Economia, Fall 2016, 167-182.
  • DIRON, M. (2008), “Short‐term forecasts of euro area real GDP growth: An assessment of real‐time performance based on vintage data”, Journal of Forecasting, 27, 371–390.
  • DOĞAN, B. Ş. ve MİDİLİÇ, M. (2017), “Forecasting Turkish real GDP growth in a data-rich Environment”, Empirical Economics, 56, 367–395.
  • DOMAR, E. D. (1946), “Capital Expansion, Rate of Growth, and Employment”, Econometrica, 14, 137-147.
  • EICKMEIER, S., ZIEGLER, C. (2008), “How successful are dynamic factormodels at forecasting output and inflation? A meta-analytic approach”, Journal of Forecasting, 27(3), 237–265.
  • FERRARA, L. ve MARSILLI, C. (2017), “Nowcasting global economic growth: A factoraugmented mixed‐frequency approach”, World Economy, 42, 846–875.
  • FERRARA, L., GUEGAN, D., ve RAKOTOMAROLAHY, P. (2010), “GDP nowcasting with ragged‐edge data: A semi‐parametric modelling”, Journal of Forecasting, 29, 186–199.
  • FORNARO, P ve LUOMARANTA, H. (2020), “Nowcasting Finnish real economic activity: a machine learning approach”, Empirical Economic, 58, 55–71.
  • FORNI M, HALLIN M, LIPPI M, REICHLIN L (2000) The generalized dynamic-factor model: identification and estimation. Rev Econ Stat 82(4):540–554
  • FORNI, M., HALLIN, M., LIPPI, M. ve REICHLIN, L. (2005), “The generalized dynamic factor model: one-sided estimation and forecasting”, Journal of the American Statistical Association, 100, 830–840.
  • G´ALVEZ-SORIANO, O. J. (2019), “Nowcasting Mexico’s Quarterly GDP Using Factor Models and Bridge Equations”, Estudios Economicos, 35(2), 213-265.
  • GIANNONE, D., REICHLIN, L. ve SMALL, D. H. (2008), “Nowcasting:The Real-Time Informational Content of Macroeconomic Data”, Journal of Monetary Economics, 55, 665– 676. doi:10.1016/j.jmoneco.2008.05.010.
  • GIANNONE, D., REICHLIN, L. ve SMALL, D. H. (2006), “Nowcasting GDP and Inflation: The Real-time Informational Content of Macroeconomic Data Releases”, European Central Bank Working Paper Series, No. 633.
  • GIANNONE, D., REICHLIN, L. ve SIMONELLI, S. (2010), “Nowcasting Euro Area Economıc Actıvıty in Real Time: The Role of Confidence Indicators”, Natıonal Instıtute Economıc Review, No. 210, 90-97.
  • GOLINELLI, R., PARIGI, G. (2007), “Using Monthly Indicators to Bridge-Forecast Quarterly GDP for the G7 Countries”, Journal of Forecasting, 26(2), 77-94. GHYSELS, E., SINKO, A., VALKANOV, R. (2007), “Midas Regressions: Further Results and New Dırections”, Econometric Reviews, 26(1), 53–90.
  • GHYSELS, E., SANTA-CLARA, P., ve VALKANOV, R. (2002), “The MIDAS touch: Mixed data sampling regression models”, CIRANO Working Papers, CIRANO.
  • GHYSELS, E., SANTA-CLARA, P., SINKO, A., ve VALKANOV, R. (2004), “MIDAS regressions: Further results and new directions”, mimeo, Chapel Hill, N.C.
  • GIANNONE, D., REICHLIN, L., SMALL, D. H. (2006), “Nowcasting GDP and Inflation The RealTime Informational Content of Macroeconomic Data Releases”, European Central Bank Working Paper Series, No:633.
  • GIRARDI, A., GAYER, C., REUTER, A. (2015), “The Role of Survey Data in Nowcasting Euro Area GDP Growth”, Journal of Forecasting, 35, 400–418.
  • GOLINELLI, R., & PARIGI, G. (2014), “Tracking world trade and GDP in real time”, International Journal of Forecasting, 30(4), 847–862.
  • GÜNAY, M. (2018), “Nowcasting Annual Turkish GDP Growth with MIDAS”, Research Notes in Economics, No: 18-10.
  • HARROD, R. (1939), “An Essay in Dynamic Theory". The Economic Journal, 193, 14-33.
  • IACOVIELLO, M. (2001), “Short-term Forecasting: Projections Italian GDP, One Quarter to Two Years Ahead”, IMF Working Paper, WP/01/109.
  • INOUE, A. ve KILIAN, L. (2006), “On the selection of forecasting models”, Journal of Econometrics, 130, 273–306.
  • JARDET, C. ve MEUNIER, B. (2022), “Nowcasting World GDP growth with high frequency data”, Journal of Forecasting, 41, 1181-1200.
  • KAZDAL, A., ve GÜL, S. (2021), “Nowcasting and Short-term Forecasting Turkish GDP: FactorMIDAS Approach”, TCMB Working Paper No: 21/11.
  • LIEBERMANN, J. (2014), “Real-Time Nowcasting of GDP:A Factor Model vs. Professional Forecasters”, Oxford Bulletin of Economics And Statistics, 76 (6), 783-811.
  • LUCAS, R. E. (1988), "On the Mechanics of Economic-Development." Journal of Monetary Economics, 22(1), 3-42.
  • MARCELLINO, M. and SCHUMACHER, C. (2010), “Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP”, Oxford Bulletin of Economics and Statistics, 72, 4, 518-550.
  • NASER, H. (2015), “Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods”, Empirical Economics, 49, 449-479.
  • RAMSEY, F. P. (1928), "A Mathematical Theory of Saving". Economic Journal, 38 (152), 543–559.
  • REBELO, S. (1991), “Long Run Policy Analysis and Long Run Growth”, Journal of Political Economy, 99, 500-521.
  • ROMER, Paul (1986), “Increasing Returns and Long-Run Growth”, Journal of Political Economy, 4(5), 1002-1037.
  • SCHUMACHER, C. (2007), “Forecasting German GDP using alternative factor models based on large datasets”, Journal of Forecasting, 26(4), 271–302.
  • STOCK, J. H. ve WATSON, M. W. (2002a), “Forecasting using principal components from a large number of predictors Journal of the American Statistical Association”, 97(460), Theory and Methods, DO1 10.1 198101 621450238861 8960.
  • STOK, J. H. ve WATSON, W. M. (2002b), “Macroeconomic Forecasting Using Diffusion Indexes”, Journal of Business & Economic Statistics, 20(2), 147-162.
  • SOLBERGER, M. ve SPANBERG, E. (2020), “Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother”, Computational Economics, 55, 875–900.
  • SOLOW, Robert, (1956), “A Contribution to the Theory of Economic Growth”, Quarterly Journal of Economics, 70 (1), 65-68.
  • SOYBİLGEN, B., YAZGAN, E. (2021), “Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors”, Computational Economics, 57, 387–417.
  • SWAN, T. W. (1956), “Economic Growth and Capital Accumulation”, Economic Record, 32, 334361.
  • YAMAK, N., SAMUT, S. ve KOÇAK, S. (2018), “Farklı Frekanslı Veriler Altında Ekonomik Büyüme Oranının Tahmini”, Ekonomi Bilimleri Dergisi, 10(1), 34-49.
Year 2024, Volume: 51 Issue: 1, 75 - 103, 28.06.2024

Abstract

References

  • AKKOYUN, H. Ç. ve GÜNAY, M. (2012), “Nowcasting Turkish GDP Growth”, CBRT Working Paper No:12/33.
  • ANDREOU, E., GHYSELS, E., KOURTELLOS, A. (2010), “Regression models with mixed sampling frequencies”, Journal of Economics, 158(2), 246–261.
  • ANDREOU, E., GHYSELS, E., KOURTELLOS, A. (2013), “Should macroeconomic forecasters use daily financial data and how?”, Journal of Business Economics and Statistics, 31(2), 240–251.
  • BAFFIGI, A., GOLINELLI, R., PARIGI, G. (2002), “Real-time GDP Forecasting in the Euro Area”, Bank of Italy Economic Working Papers, No. 456.
  • BANBURA, M., GIANNONE, D., MODUGNO, M., & REICHLIN, L. (2013), “Now-casting and the real-time data flow”, içinde: Handbook of Economic Forecasting, Vol. 2. (Ed.), G. Elliott and A. Timmermann (pp. 195–237). Amsterdam: Elsevier-North Holland.
  • BARRO, R.J. (1990), “Goverment Spending in a Simple Model of Endogenous Growth”, Journal of Political Economy, 98(5), 103-126.
  • BAUMOL, W. J., (1986), “Productivity Growth, Convergence, and Welfare: What the Long-run Data Show”, American Economic Review, 76, 1072-85.
  • BERNANKE, B. and BOIVIN, J. (2003), “Monetary policy in a data-rich environment”, Journal of Monetary Economics, 50, 525–546.
  • BOIVIN, J. and NG, S. (2005), “Understanding and comparing factor-based forecasts”, International Journal of Central Banking, 3, 117–151.
  • BOK, B., CARATELLI, D., GIANNONE, D., SBORDONE, A. M., & TAMBALOTTI, A. (2018), Macroeconomic nowcasting and forecasting with big data”, Annual Review of Economics, 10, 615–643.
  • CEPNİ, O., GÜNEY, E., SWANSON, N. R. (2019), “Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors”, Journal of Forecasting, 39, 18–36.
  • CHERNIS, T., SEKKEL, R. (2017), “A dynamic factor model for nowcasting Canadian GDP Growth”, Empirical Economics, 53, 217–234.
  • CLEMENTS, M. ve GALVÃO, A. (2008), “Macroeconomic forecasting with mixed-frequency data: forecasting output growth in the United States”, Journal of Business & Economic Statistics, 26, 546–554.
  • CLEMENTS, M. ve GALVÃO, A. (2009), “Forecasting US output growth using leading indicators: an appraisal using MIDAS models”, Journal of Applied Econometrics, 24, 1187–1206.
  • CONNOR, G., AND R. A. KORAJCZYK (1986): “Performance measurement with the arbitrage pricing theory. A new framework for analysis,” Journal of Financial Economics, 15, 373–394.
  • D’AGOSTINO A, GIANNONE D (2012), “Comparing alternative predictors based on large-panel factor models”, Oxford Bulletin of Economics and Statistics, 74(2), 306–326.
  • DELAJARA, M., ALVAREZ, F. H., TIRADO, A. R. (2016), “Nowcasting Mexico’s Short-Term GDP Growth in Real Time : A Factor Model versus Professional Forecasters”, Economia, Fall 2016, 167-182.
  • DIRON, M. (2008), “Short‐term forecasts of euro area real GDP growth: An assessment of real‐time performance based on vintage data”, Journal of Forecasting, 27, 371–390.
  • DOĞAN, B. Ş. ve MİDİLİÇ, M. (2017), “Forecasting Turkish real GDP growth in a data-rich Environment”, Empirical Economics, 56, 367–395.
  • DOMAR, E. D. (1946), “Capital Expansion, Rate of Growth, and Employment”, Econometrica, 14, 137-147.
  • EICKMEIER, S., ZIEGLER, C. (2008), “How successful are dynamic factormodels at forecasting output and inflation? A meta-analytic approach”, Journal of Forecasting, 27(3), 237–265.
  • FERRARA, L. ve MARSILLI, C. (2017), “Nowcasting global economic growth: A factoraugmented mixed‐frequency approach”, World Economy, 42, 846–875.
  • FERRARA, L., GUEGAN, D., ve RAKOTOMAROLAHY, P. (2010), “GDP nowcasting with ragged‐edge data: A semi‐parametric modelling”, Journal of Forecasting, 29, 186–199.
  • FORNARO, P ve LUOMARANTA, H. (2020), “Nowcasting Finnish real economic activity: a machine learning approach”, Empirical Economic, 58, 55–71.
  • FORNI M, HALLIN M, LIPPI M, REICHLIN L (2000) The generalized dynamic-factor model: identification and estimation. Rev Econ Stat 82(4):540–554
  • FORNI, M., HALLIN, M., LIPPI, M. ve REICHLIN, L. (2005), “The generalized dynamic factor model: one-sided estimation and forecasting”, Journal of the American Statistical Association, 100, 830–840.
  • G´ALVEZ-SORIANO, O. J. (2019), “Nowcasting Mexico’s Quarterly GDP Using Factor Models and Bridge Equations”, Estudios Economicos, 35(2), 213-265.
  • GIANNONE, D., REICHLIN, L. ve SMALL, D. H. (2008), “Nowcasting:The Real-Time Informational Content of Macroeconomic Data”, Journal of Monetary Economics, 55, 665– 676. doi:10.1016/j.jmoneco.2008.05.010.
  • GIANNONE, D., REICHLIN, L. ve SMALL, D. H. (2006), “Nowcasting GDP and Inflation: The Real-time Informational Content of Macroeconomic Data Releases”, European Central Bank Working Paper Series, No. 633.
  • GIANNONE, D., REICHLIN, L. ve SIMONELLI, S. (2010), “Nowcasting Euro Area Economıc Actıvıty in Real Time: The Role of Confidence Indicators”, Natıonal Instıtute Economıc Review, No. 210, 90-97.
  • GOLINELLI, R., PARIGI, G. (2007), “Using Monthly Indicators to Bridge-Forecast Quarterly GDP for the G7 Countries”, Journal of Forecasting, 26(2), 77-94. GHYSELS, E., SINKO, A., VALKANOV, R. (2007), “Midas Regressions: Further Results and New Dırections”, Econometric Reviews, 26(1), 53–90.
  • GHYSELS, E., SANTA-CLARA, P., ve VALKANOV, R. (2002), “The MIDAS touch: Mixed data sampling regression models”, CIRANO Working Papers, CIRANO.
  • GHYSELS, E., SANTA-CLARA, P., SINKO, A., ve VALKANOV, R. (2004), “MIDAS regressions: Further results and new directions”, mimeo, Chapel Hill, N.C.
  • GIANNONE, D., REICHLIN, L., SMALL, D. H. (2006), “Nowcasting GDP and Inflation The RealTime Informational Content of Macroeconomic Data Releases”, European Central Bank Working Paper Series, No:633.
  • GIRARDI, A., GAYER, C., REUTER, A. (2015), “The Role of Survey Data in Nowcasting Euro Area GDP Growth”, Journal of Forecasting, 35, 400–418.
  • GOLINELLI, R., & PARIGI, G. (2014), “Tracking world trade and GDP in real time”, International Journal of Forecasting, 30(4), 847–862.
  • GÜNAY, M. (2018), “Nowcasting Annual Turkish GDP Growth with MIDAS”, Research Notes in Economics, No: 18-10.
  • HARROD, R. (1939), “An Essay in Dynamic Theory". The Economic Journal, 193, 14-33.
  • IACOVIELLO, M. (2001), “Short-term Forecasting: Projections Italian GDP, One Quarter to Two Years Ahead”, IMF Working Paper, WP/01/109.
  • INOUE, A. ve KILIAN, L. (2006), “On the selection of forecasting models”, Journal of Econometrics, 130, 273–306.
  • JARDET, C. ve MEUNIER, B. (2022), “Nowcasting World GDP growth with high frequency data”, Journal of Forecasting, 41, 1181-1200.
  • KAZDAL, A., ve GÜL, S. (2021), “Nowcasting and Short-term Forecasting Turkish GDP: FactorMIDAS Approach”, TCMB Working Paper No: 21/11.
  • LIEBERMANN, J. (2014), “Real-Time Nowcasting of GDP:A Factor Model vs. Professional Forecasters”, Oxford Bulletin of Economics And Statistics, 76 (6), 783-811.
  • LUCAS, R. E. (1988), "On the Mechanics of Economic-Development." Journal of Monetary Economics, 22(1), 3-42.
  • MARCELLINO, M. and SCHUMACHER, C. (2010), “Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP”, Oxford Bulletin of Economics and Statistics, 72, 4, 518-550.
  • NASER, H. (2015), “Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods”, Empirical Economics, 49, 449-479.
  • RAMSEY, F. P. (1928), "A Mathematical Theory of Saving". Economic Journal, 38 (152), 543–559.
  • REBELO, S. (1991), “Long Run Policy Analysis and Long Run Growth”, Journal of Political Economy, 99, 500-521.
  • ROMER, Paul (1986), “Increasing Returns and Long-Run Growth”, Journal of Political Economy, 4(5), 1002-1037.
  • SCHUMACHER, C. (2007), “Forecasting German GDP using alternative factor models based on large datasets”, Journal of Forecasting, 26(4), 271–302.
  • STOCK, J. H. ve WATSON, M. W. (2002a), “Forecasting using principal components from a large number of predictors Journal of the American Statistical Association”, 97(460), Theory and Methods, DO1 10.1 198101 621450238861 8960.
  • STOK, J. H. ve WATSON, W. M. (2002b), “Macroeconomic Forecasting Using Diffusion Indexes”, Journal of Business & Economic Statistics, 20(2), 147-162.
  • SOLBERGER, M. ve SPANBERG, E. (2020), “Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother”, Computational Economics, 55, 875–900.
  • SOLOW, Robert, (1956), “A Contribution to the Theory of Economic Growth”, Quarterly Journal of Economics, 70 (1), 65-68.
  • SOYBİLGEN, B., YAZGAN, E. (2021), “Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors”, Computational Economics, 57, 387–417.
  • SWAN, T. W. (1956), “Economic Growth and Capital Accumulation”, Economic Record, 32, 334361.
  • YAMAK, N., SAMUT, S. ve KOÇAK, S. (2018), “Farklı Frekanslı Veriler Altında Ekonomik Büyüme Oranının Tahmini”, Ekonomi Bilimleri Dergisi, 10(1), 34-49.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Applied Macroeconometrics
Journal Section Research Article
Authors

Güzin Bayar This is me 0000-0003-2061-7043

Melekgül Kargı This is me 0009-0009-5129-5957

Baki Ozan Kuş This is me 0009-0002-9371-2340

Publication Date June 28, 2024
Submission Date February 1, 2024
Acceptance Date May 24, 2024
Published in Issue Year 2024 Volume: 51 Issue: 1

Cite

APA Bayar, G., Kargı, M., & Kuş, B. O. (2024). Türkiye GSYH büyümesinin MIDAS ile şimdi tahmini. Middle East Technical University Studies in Development, 51(1), 75-103.