Research Article
BibTex RIS Cite

Mısır (Zea mays L.)’ da Tuz Stresine Karşı Humik Asidin Etkisi

Year 2020, Volume: 10 Issue: 1, 11 - 18, 24.06.2020

Abstract

Son yıllarda değişen yağış rejimleri ve uygulanan sentetik takviyeler toprağın tuzluluk oranını artırmıştır. Çalışmamızda tuz stresinin mısır (Zea mays L.) üzerinde oluşturduğu stresin düzeyi IRAP (Inter-Retrotransposon Amplified Polymorphism) analizi ile değerlendirilmiştir. Uygulanan 3 g/l, 6 g/l, 9 g/l, 12 g/l tuz dozlarında retrotranspozon hareketliliğine bağlı olarak polimorfizmlerin doz ile orantılı olarak arttığı belirlenmiştir. GTS (Genomic Template Stability) değerlerinin ise artan tuz stresinin negatif etkisi ile azaldığı tespit edilmiştir. Çalışmada tuz stresini hafifletmek için uygulanan Humik asit takviyesinin retrotranspozon hareketliliğini azalttığı, GTS değerinde artışa neden olduğu anlaşılmıştır. Ürünlerde verim ve kalite kaybına neden olan tuz stresine karşı humik asit takviyesinin faydalı olacağı belirlenmiştir.

Supporting Institution

Destek içermemektedir

References

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W, 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in plant science, 7: 1-11.
  • Atienzar FA, Conradi M, Evenden AJ, Jha AN and Depledge MH, 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology Chemster, 18, 2275-2282.
  • Breusegem FV, Vranová E, Dat J, Inz D, 2001. The Role of Active Oxygen Species in Plant Signal Transduction. Plant Science, 161: 405-414.
  • Buyukkeskin T, Akinci Ş, Eroğlu AE, 2014. The effects of humic acid on root development and nutrient uptake of Vicia faba L.(Broad Bean) seedlings grown under aluminum toxicity Commun. Soil Sci. Plant Anal., 46 (3) : 277-292.
  • Cheng H, Marín-Sáez J, González R, Frenich R. 2017. Simultaneous determination of atropine and scopolamine in buckwheat and related products using modified QuEChERS and liquid chromatography tandem mass spectrometry. Food Chem., 218, 173-180.
  • Chinnusamy V, Jagendorf A, Zhu JK, 2005. Understanding and improving salt tolerance in plants Crop Sci., 45 : 437-448. Ekmekçi E, Apan M, Kara T, 2005. Tuzluluğun bitki gelişimine etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(3): 118-125.
  • Farooq M, Hussain M, Siddique KHM, 2014. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci., 33 : 331-349.
  • Farooq M, Hussain M, Wakeel A, Siddique KHM, 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev., 35 :461-481.
  • Ferrara G, Loffredo E, Senesi N, 2004. Anticlastogenic, antitoxic and sorption effects of humic substances on the mutagen maleic hydrazide tested in leguminous plants Eur. J. Soil Sci., 55 :449-458.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48 (12) : 909-930, 10.1016/j.plaphy.2010.08.016.
  • Grandbastien MA, Audeon CE, Bonnivard JM, Casacuberta B, Chalhoub APP, Costa QH, Lea D, Melayah M, Petit C, Poncet SM, Tam MA, Van Sluys C and Mhiria, 2005. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res., 110, 229- 241.
  • Hirochika, H. 1995. Activation of plant retrotransposons by stress, in Oono K, Takaiwa F (eds): Modification of Gene Expression and Non-Mendelien Inheritance. NIAS-Japan pp 15-21.
  • Jena NR, 2012. DNA damage by reactive species: mechanisms, mutation and repair. Journal Biosciences, 37, 503-517.
  • Jomova K and Valko M, 2011. Advances in metal-induced oxidative stress and human disease. Toxicology, 283 (2-3): 65-87.
  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH, 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical Applied and Genetics, 98, 704-711.
  • Kendirli B, Çakmak B, Uçar Y, 2005. Salinity in the Southeastern Anatolia Project (GAP). Turkey: Issues and Options. İrrigation and Drainage, 54(1): 115-122.
  • Kosová K, Vítámvása P, Prášila IT, Renaut J, 2011. Plant proteome changes under abiotic stress-Contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74, 1301-1322.
  • Malarkodi C, Rajeshkumar S, Annadurai G, 2017. Detection of environmentally hazardous pesticide in fruit and vegetable samples using gold nanoparticles. Food Control, 80, 11-18.
  • Marova I, Kucerik J, Duronova K, Mikulcova A, Vlckova Z, 2011. Antimutagenic and/or genotoxic effects of processed humic acids as tested upon S. cerevisiae D7 Environ. Chem. Lett., 9 : 229-233.
  • Morales J, Manso JA, Cid A, et al., 2012. Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions Chemosphere, 89 (11):1267-1271.
  • Moreno-González D, Pérez-Ortega P, Gilbert-López B, Molina-Díaza,A, F.García-Reyes J, R, Fernández-Alba A, 2017. Evaluation of nanoflow liquid chromatography high resolution mass spectrometry for pesticide residue analysis in food. Journal of Chromatography A. Volume 1512, 25:78-87.
  • Munns R, Tester M, 2008. Mechanisms of salinity tolerance. Annual review of plant biology, 59: 651-681.
  • Picault N, Chaparro C, Piegu B,Willfried F, Damien L, Cristel D, Julie,S Francois L, Eric M, Donaldo G, Emmanuel P, 2009. Identification of an active LTR retrotransposon in rice. The plant journal. https://doi.org/10.1111/j.1365-313X.2009.03813.x.
  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M, 2017. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Frontiers in chemistry. doi: 10.3389/fchem.2017.00078.
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW, 1984. Ribosomal DNAsepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population Dynamics. Proceedings of the National Academy Sciences, 81: 8014-8019.
  • Suh HY, Yoo KS, Sang GS, 2014. Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.) Hortic. Environ. Biotechnol., 55 (6) (2014), pp. 455-461.
  • Sun ZX, Wang YN, Mou FP, Tian YP, Chen L, Zhang SL, Jiang Q, Li X, 2016. Genome-wide small RNA analysis of soybean reveals auxin-responsive microRNAs that are differentially expressed in response to salt stress in root apex. Frontiers in plant science, 18;6:1273.
  • Taiz L and Zeiger E, (2010) ‘‘Plant Physiology’’, Fifth Edition, Sinauer Associates, Sunderland.
  • TÜİK- Türk İstatistik Kurumu. 2019. Temel istatistik, Nüfus demografi. http://www.tuik.gov.tr/UstMenu. dometod=temelist. Son erişim tarihi: 10.01.2020.
  • TÜİK- Türk İstatistik Kurumu, 2020. Temel istatistik, Tarımsal üretim, Tahıllar ve Diğer Bitkisel Ürünlerin Alan ve Üretim Miktarları. http://www.tuik.gov.tr/UstMenu. dometod=temelist. Son erişim tarihi: 12.01.2020.
  • Verma S, Mishra SN, 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J. Plant Physiol., 162 (6) : 669-677, 10.1016/j.jplph.2004.08.008
  • Voets J, Bervoets L, Blust R, 2004. Cadmium bioavailability and accumulation in the presence of humic acid to the zebra mussel, Dreissena polymorpha Environ. Sci. Technol., 1003-1008.
  • Wani SH, Gosal SS, 2011. Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol. Planta, 55 (3) : 536-540, 10.1007/s10535-011-0082-y.
  • Weng LP, Van Riemsdijk WH, Koopal LK,. et al., 2006. Adsorption of humic substances on goethite: comparison between humic acids and fulvic acids. Environ. Sci. Technol., 40 (20):7494-7500.
  • Yaghobi KH, Ghaderi N, Vafaee Y, Javadi T, 2016. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture Sci. Hortic., 213 (2016), pp. 87-95, 10.1016/j.scienta.2016.10.012.

Mısır (Zea mays L.)’ da Tuz Stresine Karşı Humik Asidin Etkisi

Year 2020, Volume: 10 Issue: 1, 11 - 18, 24.06.2020

Abstract

Son yıllarda değişen yağış rejimleri ve uygulanan sentetik takviyeler toprağın tuzluluk oranını artırmıştır. Tuzluluk kuraklıktan sonra en çok verim kaybına neden olan abiyotik stres faktörüdür. Çalışmamızda tuz stresinin mısır (Zea mays L.) üzerinde oluşturduğu stresin düzeyi IRAP (Inter-Retrotransposon Amplified Polymorphism) analizi ile değerlendirilmiştir. Uygulanan 3 g/l, 6 g/l, 9 g/l, 12 g/l tuz dozlarında retrotranspozon hareketliliğine bağlı olarak polimorfizmlerin doz ile orantılı olarak arttığı belirlenmiştir. GTS (Genomic Template Stability) değerlerinin ise artan tuz stresinin negatif etkisi ile azaldığı tespit edilmiştir. Çalışmada tuz stresini hafifletmek için uygulanan Hümik asit takviyesinin retrotranspozon hareketliliğini azalttığı, GTS değerinde artışa neden olduğu anlaşılmıştır. Ürünlerde verim ve kalite kaybına neden olan tuz stresine karşı hümik asit takviyesinin faydalı olacağını ifade edebiliriz.

References

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W, 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in plant science, 7: 1-11.
  • Atienzar FA, Conradi M, Evenden AJ, Jha AN and Depledge MH, 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology Chemster, 18, 2275-2282.
  • Breusegem FV, Vranová E, Dat J, Inz D, 2001. The Role of Active Oxygen Species in Plant Signal Transduction. Plant Science, 161: 405-414.
  • Buyukkeskin T, Akinci Ş, Eroğlu AE, 2014. The effects of humic acid on root development and nutrient uptake of Vicia faba L.(Broad Bean) seedlings grown under aluminum toxicity Commun. Soil Sci. Plant Anal., 46 (3) : 277-292.
  • Cheng H, Marín-Sáez J, González R, Frenich R. 2017. Simultaneous determination of atropine and scopolamine in buckwheat and related products using modified QuEChERS and liquid chromatography tandem mass spectrometry. Food Chem., 218, 173-180.
  • Chinnusamy V, Jagendorf A, Zhu JK, 2005. Understanding and improving salt tolerance in plants Crop Sci., 45 : 437-448. Ekmekçi E, Apan M, Kara T, 2005. Tuzluluğun bitki gelişimine etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(3): 118-125.
  • Farooq M, Hussain M, Siddique KHM, 2014. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci., 33 : 331-349.
  • Farooq M, Hussain M, Wakeel A, Siddique KHM, 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev., 35 :461-481.
  • Ferrara G, Loffredo E, Senesi N, 2004. Anticlastogenic, antitoxic and sorption effects of humic substances on the mutagen maleic hydrazide tested in leguminous plants Eur. J. Soil Sci., 55 :449-458.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48 (12) : 909-930, 10.1016/j.plaphy.2010.08.016.
  • Grandbastien MA, Audeon CE, Bonnivard JM, Casacuberta B, Chalhoub APP, Costa QH, Lea D, Melayah M, Petit C, Poncet SM, Tam MA, Van Sluys C and Mhiria, 2005. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res., 110, 229- 241.
  • Hirochika, H. 1995. Activation of plant retrotransposons by stress, in Oono K, Takaiwa F (eds): Modification of Gene Expression and Non-Mendelien Inheritance. NIAS-Japan pp 15-21.
  • Jena NR, 2012. DNA damage by reactive species: mechanisms, mutation and repair. Journal Biosciences, 37, 503-517.
  • Jomova K and Valko M, 2011. Advances in metal-induced oxidative stress and human disease. Toxicology, 283 (2-3): 65-87.
  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH, 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical Applied and Genetics, 98, 704-711.
  • Kendirli B, Çakmak B, Uçar Y, 2005. Salinity in the Southeastern Anatolia Project (GAP). Turkey: Issues and Options. İrrigation and Drainage, 54(1): 115-122.
  • Kosová K, Vítámvása P, Prášila IT, Renaut J, 2011. Plant proteome changes under abiotic stress-Contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74, 1301-1322.
  • Malarkodi C, Rajeshkumar S, Annadurai G, 2017. Detection of environmentally hazardous pesticide in fruit and vegetable samples using gold nanoparticles. Food Control, 80, 11-18.
  • Marova I, Kucerik J, Duronova K, Mikulcova A, Vlckova Z, 2011. Antimutagenic and/or genotoxic effects of processed humic acids as tested upon S. cerevisiae D7 Environ. Chem. Lett., 9 : 229-233.
  • Morales J, Manso JA, Cid A, et al., 2012. Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions Chemosphere, 89 (11):1267-1271.
  • Moreno-González D, Pérez-Ortega P, Gilbert-López B, Molina-Díaza,A, F.García-Reyes J, R, Fernández-Alba A, 2017. Evaluation of nanoflow liquid chromatography high resolution mass spectrometry for pesticide residue analysis in food. Journal of Chromatography A. Volume 1512, 25:78-87.
  • Munns R, Tester M, 2008. Mechanisms of salinity tolerance. Annual review of plant biology, 59: 651-681.
  • Picault N, Chaparro C, Piegu B,Willfried F, Damien L, Cristel D, Julie,S Francois L, Eric M, Donaldo G, Emmanuel P, 2009. Identification of an active LTR retrotransposon in rice. The plant journal. https://doi.org/10.1111/j.1365-313X.2009.03813.x.
  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M, 2017. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Frontiers in chemistry. doi: 10.3389/fchem.2017.00078.
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW, 1984. Ribosomal DNAsepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population Dynamics. Proceedings of the National Academy Sciences, 81: 8014-8019.
  • Suh HY, Yoo KS, Sang GS, 2014. Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.) Hortic. Environ. Biotechnol., 55 (6) (2014), pp. 455-461.
  • Sun ZX, Wang YN, Mou FP, Tian YP, Chen L, Zhang SL, Jiang Q, Li X, 2016. Genome-wide small RNA analysis of soybean reveals auxin-responsive microRNAs that are differentially expressed in response to salt stress in root apex. Frontiers in plant science, 18;6:1273.
  • Taiz L and Zeiger E, (2010) ‘‘Plant Physiology’’, Fifth Edition, Sinauer Associates, Sunderland.
  • TÜİK- Türk İstatistik Kurumu. 2019. Temel istatistik, Nüfus demografi. http://www.tuik.gov.tr/UstMenu. dometod=temelist. Son erişim tarihi: 10.01.2020.
  • TÜİK- Türk İstatistik Kurumu, 2020. Temel istatistik, Tarımsal üretim, Tahıllar ve Diğer Bitkisel Ürünlerin Alan ve Üretim Miktarları. http://www.tuik.gov.tr/UstMenu. dometod=temelist. Son erişim tarihi: 12.01.2020.
  • Verma S, Mishra SN, 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J. Plant Physiol., 162 (6) : 669-677, 10.1016/j.jplph.2004.08.008
  • Voets J, Bervoets L, Blust R, 2004. Cadmium bioavailability and accumulation in the presence of humic acid to the zebra mussel, Dreissena polymorpha Environ. Sci. Technol., 1003-1008.
  • Wani SH, Gosal SS, 2011. Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol. Planta, 55 (3) : 536-540, 10.1007/s10535-011-0082-y.
  • Weng LP, Van Riemsdijk WH, Koopal LK,. et al., 2006. Adsorption of humic substances on goethite: comparison between humic acids and fulvic acids. Environ. Sci. Technol., 40 (20):7494-7500.
  • Yaghobi KH, Ghaderi N, Vafaee Y, Javadi T, 2016. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture Sci. Hortic., 213 (2016), pp. 87-95, 10.1016/j.scienta.2016.10.012.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Article
Authors

Hüseyin Bulut 0000-0003-3424-7012

Publication Date June 24, 2020
Submission Date February 28, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Bulut, H. (2020). Mısır (Zea mays L.)’ da Tuz Stresine Karşı Humik Asidin Etkisi. Manas Journal of Agriculture Veterinary and Life Sciences, 10(1), 11-18.
AMA Bulut H. Mısır (Zea mays L.)’ da Tuz Stresine Karşı Humik Asidin Etkisi. MJAVL. June 2020;10(1):11-18.
Chicago Bulut, Hüseyin. “Mısır (Zea Mays L.)’ Da Tuz Stresine Karşı Humik Asidin Etkisi”. Manas Journal of Agriculture Veterinary and Life Sciences 10, no. 1 (June 2020): 11-18.
EndNote Bulut H (June 1, 2020) Mısır (Zea mays L.)’ da Tuz Stresine Karşı Humik Asidin Etkisi. Manas Journal of Agriculture Veterinary and Life Sciences 10 1 11–18.
IEEE H. Bulut, “Mısır (Zea mays L.)’ da Tuz Stresine Karşı Humik Asidin Etkisi”, MJAVL, vol. 10, no. 1, pp. 11–18, 2020.
ISNAD Bulut, Hüseyin. “Mısır (Zea Mays L.)’ Da Tuz Stresine Karşı Humik Asidin Etkisi”. Manas Journal of Agriculture Veterinary and Life Sciences 10/1 (June 2020), 11-18.
JAMA Bulut H. Mısır (Zea mays L.)’ da Tuz Stresine Karşı Humik Asidin Etkisi. MJAVL. 2020;10:11–18.
MLA Bulut, Hüseyin. “Mısır (Zea Mays L.)’ Da Tuz Stresine Karşı Humik Asidin Etkisi”. Manas Journal of Agriculture Veterinary and Life Sciences, vol. 10, no. 1, 2020, pp. 11-18.
Vancouver Bulut H. Mısır (Zea mays L.)’ da Tuz Stresine Karşı Humik Asidin Etkisi. MJAVL. 2020;10(1):11-8.