Review
BibTex RIS Cite

Global Climate Change and Dairy Cattle Breeding

Year 2024, Volume: 14 Issue: 1, 92 - 100, 28.06.2024
https://doi.org/10.53518/mjavl.1418769

Abstract

Global climate change is an issue that has recently been of great concern to all production systems due to the greenhouse effect of gases released into the atmosphere. Failure to prevent global warming poses a risk to the diversity of plants and animals, to production systems, to ecosystems and to food security. The effects of this warming are seen directly or indirectly (seasonal pasture utilization, feed quantity and quality, feeding methods, etc.). The length of extreme hot periods is affecting all over the world and causing difficulties in livestock production systems. This review addresses the requirements for dairy cattle production systems resulting from climate change. It is aimed to examine the potential impacts of climate change on dairy cattle in terms of animal welfare, nutrition, health and production performance. All effects that can be seen directly or indirectly are related to the performance of the animal. High yielding dairy cows are more vulnerable to these impacts. In order to cope with these effects, various adaptation methods and heat load reduction strategies should be planned to be activated at different levels. All changes include changes in production systems, different management options and health management.

References

  • Akbarabadi, M.A., Shabankareh, H.K., Abdolmohammadi, A. & Shahsavari, M.H. (2014). Effect of PGF2α and GnRH on the reproductive performance of postpartum dairy cows subjected to synchronization of ovulation and timed artificial insemination during the warm or cold periods of the year. Theriogenology, 82(3), 509–516. https://doi.org//10.1016/j.theriogenology.2014.05.005
  • Allen, J.D., Hall, L.W., Collier, R.J. & Smith, J.F. (2015). Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. Journal of Dairy Science, 98(1), 118–127. https://doi.org//10.3168/jds.2013-7704
  • Ammer, S., Lambertz, C. & Gauly, M. (2016). Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. Journal of Dairy Research, 83(2), 165–172. https://doi.org/10.1017/S0022029916000182
  • Ammer, S., Lambertz, C., von Soosten, D., Zimmer, K., Meyer, U., Dänicke, S. & Gauly, M. (2017). Impact of diet composition and temperature–humidity index on water and dry matter intake of high-yielding dairy cows. Journal of Animal Physiology and Animal Nutrition, 102(1), 103–113. https://doi.org/10.1111/jpn.12664
  • Atrian, P., ve Shahryar, H.A. (2012). Heat stress in dairy cows (a review). Research in Zoology, 2(4), 31-37.
  • Avendaño-Reyes, L., Álvarez-Valenzuela, F.D., Correa-Calderón, A., Algándar Sandoval, A., Rodríguez-González, E., Pérez-Velázquez, R., Macías-Cruz, U., Díaz-Molina, R., Robinson, P.H. & Fadel, J.G. (2010). Comparison of three cooling management systems to reduce heat stress in lactating Holstein cows during hot and dry ambient conditions. Livestock Science, 132(1-3), 48–52. https://doi.org/10.1016/j.livsci.2010.04.020
  • Bertocchi, L., Vitali, A., Lacetera, N., Nardone, A., Varisco, G., & Bernabucci, U. (2014). Seasonal variations in the composition of Holstein cow’s milk and temperature–humidity index relationship. Animal, 8(4), 667-674. https://doi.org/10.1017/S1751731114000032
  • Bett, B. Kiunga, P. Gachohi, J. Sindato, C. Mbotha, D. Robinson, T. Lindahl, J. & Grace, D. (2017). Effects of climate change on the occurrence and distribution of livestock diseases. Preventive Veterinary Medicine, 137, 119–129. https://doi.org/10.1016/j.prevetmed.2016.11.019
  • Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M. & Belyea. R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, 51(6), 479–491. https://doi.org/10.1051/animres:2002036
  • Calegari, F., Calamari, L. & Frazzi, E. (2012). Misting and fan cooling of the rest area in a dairy barn. International Journal of Biometeorology, 56(2), 287–295. https://dx.doi.org/10.1007/s00484-011-0432-7
  • Charlier, J., Ghebretinsae, A.H., Levecke, B., Ducheyne, E., Claerebout, E. & Vercruysse, J. (2016). Climate-driven longitudinal trends in pasture-borne helminth infections of dairy cattle. International Journal for Parasitology, 46(13-14), 881–888. https://doi.org//10.1016/j.ijpara.2016.09.001
  • Chen, S., Bai, Y., Lin, G., Huang, J. & Han, X. (2007). Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. Journal of Arid Environments, 71(1), 12–28. https://doi.org/10.1016/j.jaridenv.2007.02.006
  • Cook, N.B., Mentink, R.L., Bennett, T.B. & Burgi, K. (2007). The effect of heat stress and lameness on time budgets of lactating dairy cows. Journal of Dairy Science, 90(4), 1674–1682. https://doi.org/10.3168/jds.2006-634
  • Cowley, F.C., Barber, D.G., Houlihan, A.V. & Poppi, D.P. (2015). Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. Journal of Dairy Science, 98(4), 2356–2368. https://doi.org/10.3168/jds.2014-8442
  • Craine, J.M., Elmore, A.J., Olson, K.C. & Tolleson, D. (2010). Climate change and cattle nutritional stress. Global Change Biology, 16(10), 2901–2911. https://doi.org/10.1111/j.1365-2486.2009.02060.x
  • Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: a review. Veterinary World, 9(3), 260–268. https://doi.org/10.14202/vetworld.2016.260-268
  • Enemark, J.M.D., Jorgensen, R.J. & Enemark, P.S. (2002). Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: a review. Veterinarija ir zootechnika, 20(42), 16-29.
  • Fitzgerald, J.B., Brereton, A.J. & Holden, N.M. (2009). Assessment of the adaptation potential of grass-based dairy systems to climate change in Ireland – the maximised production scenario. Agricultural and Forest Meteorology, 149(2), 244–255. https://doi.org/10.1016/j.agrformet.2008.08.006
  • Galán, E., Llonch, P., Villagrá, A., Levit, H., Pinto, S. & Del Prado, A. (2018). A systematic review of non-productivity- related animal-based indicators of heat stress resilience in dairy cattle. Plos One, 13(11), 2562. https://doi.org/10.1371/journal.pone.0206520
  • Gauly, M., Bollwein, H., Breves, G., Brügemann, K., Dänicke, S., Daş, G., Demeler, J., Hansen, H., Isselstein J, König, S., Lohölter, M., Martinsohn, M., Meyer, U., Potthoff, M., Sanker, C., Schröder, B., Wrage, N., Meibaum, B., Samson- Himmelstjerna, G. Von, Stinshoff, H. & Wrenzycki, C. (2013). Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe – a review. Animal, 7(5), 843–859. https://doi.org/10.1017/S1751731112002352
  • Gauly, M. ve Ammer, S. (2020). Review: Challenges for dairy cow production systems arising from climate changes. Animal, 14(S1), S196–S203. https://doi.org/10.1017/S1751731119003239
  • Heinicke, J., Ibscher, S., Belik, V. & Amon, T. (2019). Cow individual activity response to the accumulation of heat load duration. Journal of Thermal Biology, 82, 23–32. https://doi.org/10.1016/j.jtherbio.2019.03.011
  • Holden, N.M., Brereton, A.J. & Fitzgerald, J.B. (2008). Impact of climate change on Irish agricultural production systems. In Climate change – refining the impacts for Ireland (ed. Environmental Protection Agency), (pp. 82– 131). Wexford: Environmental Protection Agency.
  • Honig, H., Ofer, L., Kaim, M., Jacobi, S., Shinder, D. & Gershon, E. (2016). The effect of cooling management on blood flow to the dominant follicle and estrous cycle length at heat stress. Theriogenology, 86(2), 626–634. https://doi.org/10.1016/j.theriogenology.2016.02.017
  • IPCC. (2014). Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 1–1132). Cambridge: Cambridge University Press.
  • Kadokawa, H., Sakatani, M. & Hansen, P.J. (2012). Perspectives on improvement of reproduction in cattle during heat stress in a future Japan. Animal Science Journal, 83(6), 439–445. https://doi.org/10.1111/j.1740- 0929.2012.01011.x
  • Kendall, P.E., Verkerk, G.A., Webster, J.R. & Tucker, C.B. (20079. Sprinklers and shade cool cows and reduce insect-avoidance behavior in pasture-based dairy systems. Journal of Dairy Science, 90(8), 3671–3680. https://doi.org/10.3168/jds.2006-766
  • Koyuncu, M. ve Akgün, H. (2018). Çiftlik hayvanları ve küresel iklim değişikliği arasındaki etkileşim. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 151-164.
  • Lacetera, N., Bernabucci, U., Ronchi, B. & Nardone, A. (1996). Body condition score, metabolic status and milk production of early lactating dairy cows exposed to warm environment. Rivista di Agricoltura Subtropicale e Tropicale 90(1), 43–55.
  • Lambertz, C., Sanker, C. & Gauly, M. (2014). Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. Journal of Dairy Science, 97(1), 319–329. https://doi.org/10.3168/jds.2013-7217
  • Laporta, J., Fabris, T.F., Skibiel, A.L., Powell, J.L., Hayen, M.J., Horvath, K., Miller-Cushon, E.K. & Dahl, G.E. (2017). In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. Journal of Dairy Science, 100(4), 2976–2984. https://doi.org//10.3168/jds.2016-11993
  • Legrand, A.L., von Keyserlingk, M.A.G. & Weary, D.M. 2009. Preference and usage of pasture versus free-stall housing by lactating dairy cattle. Journal of Dairy Science, 92(8), 3651–3658. https://doi.org/10.3168/jds.2008- 1733
  • Liang, D., Wood, C.L., McQuerry, K.J., Ray, D.L., Clark, J.D. & Bewley, J.M. (2013). Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. Journal of Dairy Science, 96(8), 5072–5081. https://doi.org/10.3168/jds.2012-6537
  • Liu, Z., Ezernieks, V., Wang, J., Arachchillage, N.W., Garner, J.B., Wales, W.J., Cocks, B.G. & Rochfort, S. (2017). Heat stress in dairy cattle alters lipid composition of milk. Scientific Reports, 7, 961. https://doi.org//10.1038/s41598- 017-01120-9
  • López-Gatius, F., Santolaria, P., Martino, A., Delétang, F. & De Rensis, F. (2006). The effects of GnRH treatment at the time of AI and 12 days later on reproductive performance of high producing dairy cows during the warm season in northeastern Spain. Theriogenology, 65(4), 820–830. https://doi.org/10.1016/j.theriogenology.2005.07.002
  • Ma, S., Lardy, B., Graux, A.I., Klumpp, K., Martin, R. & Bellocchi, G. (2015). Regionalsclae analysis of carbon and water cycles on managed grassland systems. Environmental Modelling & Software, 72, 356–371. https://doi.org/10.1016/j.envsoft.2015.03.007
  • Malama, E., Zeron, Y., Janett, F., Siuda, M., Roth, Z. & Bollwein, H. (2017). Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality. Theriogenology, 87, 79–90. https://doi.org/10.1016/j.theriogenology.2016.08.002
  • Mariani P, Zanzucchi G, Blanco P and Masoni M 1993. Variazioni stagionali del contenuto in fosforo del latte di massa di singoli allevamenti. L’industria del Latte, 29, 39–53.
  • Morgan, E., Charlier, J., Hendrickx, G., Biggeri, A., Catalan, D., Samson-Himmelstjerna, G von., Demeler, J., Müller, E., van Dijk, J., Kenyon, F., Skuce, P., Höglund, J., O’Kiely, P., van Ranst, B., Waal, T de., Rinaldi, L., Cringoli, G., Hertzberg, H., Torgerson, P., Wolstenholme, A. & Vercruysse, J. (2013). Global change and helminth infections in grazing ruminants in Europe: impacts, trends and sustainable solutions. Agriculture, 3(3), 484–502. https://doi.org/10.3390/agriculture3030484
  • Nabenishi, H., Ohta, H., Nishimoto, T., Morita, T., Ashizawa, K. & Tsuzuki, Y. (2011). Effect of the temperature- humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan. Journal of Reproduction, 57(4), 450–456. https://doi.org/10.1262/jrd.10-135T
  • Nikkhah, A., Furedi, C.J., Kennedy, A.D., Scott, S.L., Wittenberg, K.M., Crow, G.H. & Plaizier, J.C. (2011). Morning vs. evening feed delivery for lactating dairy cows. Canadian Journal of Animal Science, 91(1), 113–122. https://doi.org/10.4141/CJAS10012
  • Ominski, K.H., Kennedy, A.D., Wittenberg, K.M. & Nia, S.A.M. (2002). Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress. Journal of Dairy Science, 85(4), 730–737. https://doi.org/10.3168/jds.S0022-0302(02)74130-1
  • Paes, V.M., Vieira, L.A., Correia, H.H.V., Sa, N.A.R., Moura, A.A.A., Sales, A.D., Rodrigues, A.P.R., Magalhães-Padilha, D.M., Santos, F.W., Apgar, G.A., Campello, C.C., Camargo, L.S.A. & Figueiredo, J.R. (2016). Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulusoocyte complex. Theriogenology, 86(4), 994–1003. https://doi.org/10.1016/j.theriogenology.2016.03.027
  • Perring, M.P., Cullen, B.R., Johnson, I.R. & Hovenden, M.J. (2010). Modelled effects of rising CO2 concentration and climate change on native perennial grass and sown grass-legume pastures. Climate Research, 42(1), 65–78.
  • Phelan, P., Morgan, E.R., Rose, H., Grant, J. & O’Kiely, P. (2016). Predictions of future grazing season length for European dairy, beef and sheep farms based on regression with bioclimatic variables. Journal of Agricultural Science, 154(5), 765–781. https://doi.org/10.1017/S0021859615000830
  • Polsky, L. ve von Keyserlingk, M.A.G. (2017). Invited review: effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645–8657. https://doi.org/10.3168/jds.2017-12651
  • Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J.L. & Collier, R.J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707–728. https://doi.org/10.1017/S1751731111002448
  • Rust, J.M. (2019). The impact of climate change on extensive and intensive livestock production systems. Animal Frontiers, 9(1), 20–25. https://doi.org/10.1093/af/vfy028
  • Sabés-Alsina, M., Lundeheim, N., Johannisson, A., López-Béjar, M. & Morrell, J.M. (2019). Relationships between climate and sperm quality in dairy bull semen: a retrospective analysis. Journal of Dairy Science, 102(6), 5623– 5633. https://doi.org/10.3168/jds.2018-15837
  • Safa, S., Kargar, S., Moghaddam, G.A., Ciliberti, M.G. & Caroprese, M. (2019). Heat stress abatement during the postpartum period: effects on whole lactation milk yield, indicators of metabolic status, inflammatory cytokines, and biomarkers of the oxidative stress. Journal of Animal Science, 97(1), 122–132. https://doi.org/10.1093/jas/sky408
  • Sakatani, M., Yamanaka, K., Balboula, A.Z., Takenouchi, N. & Takahashi, M. (2015). Heat stress during in vitro fertilization decreases fertilization success by disrupting anti-polyspermy systems of the oocytes. Molecular Reproduction and Development, 82(1), 36–47. https://doi.org/10.1002/mrd.22441
  • Sanker, C., Lambertz, C. & Gauly, M. (2013). Climatic effects in Central Europe on the frequency of medical treatments of dairy cows. Animal, 7(2), 316–321. https://doi.org/10.1017/S1751731112001668
  • Schütz, K.E., Rogers, A.R., Cox, N.R., Webster, J.R. & Tucker, C.B. (2011). Dairy cattle prefer shade over sprinklers: effects on behaviour and physiology. Journal of Dairy Science, 94(1), 273–283. https://doi.org/10.3168/jds.2010- 3608
  • Solymosi, N., Torma, C., Kern, A., Maróti-Agóts, Á., Barcza, Z., Könyves, L., Berke, O. & Reiczigel, J. (2010). Changing climate in Hungary and trends in the annual number of heat stress days. International Journal of Biometeorology, 54, 423–431. https://doi.org/10.1007/s00484-009-0293-5
  • Testa, F., Marano, G., Ambrogi, F., Boracchi, P., Casula, A., Biganzoli, E. & Moroni, P. (2017). Study of the association of atmospheric temperature and relative humidity with bulk tank milk somatic cell count in dairy herds using generalized additive mixed models. Research in Veterinary Science, 114, 511–517. https://doi.org/10.1016/j.rvsc.2017.09.027
  • Van Laer, E., Moons, C.P., Ampe, B., Sonck, B., Vandaele, L., De Campeneere, S. & Tuyttens, F.A. (2015). Effect of summer conditions and shade on behavioural indicators of thermal discomfort in Holstein dairy and Belgian Blue beef cattle on pasture. Animal, 9(9), 1536-1546. https://doi.org/10.1017/S1751731115000804
  • Vercruysse, J., Charlier, J., van Dijk, J., Morgan, E.R., Geary, T., Samson-Himmelstjerna, G von. & Claerebout, E. (2018). Control of helminth ruminant infections by 2030. Parasitology, 145(13), 1655–1664. https://doi.org/10.1017/S003118201700227X
  • Wang, J.P., Bu, D.P., Wang, J.Q., Huo, X.K., Guo, T.J., Wei, H.Y., Zhou, L.Y., Rastani, R.R., Baumgard, L.H. & Li, F.D. (2010). Effect of saturated fatty acid supplementation on production and metabolism indices in heat-stressed mid- lactation dairy cows. Journal of Dairy Science, 93(9), 4121–4127. https://doi.org//10.3168/jds.2009-2635
  • West, J.W., Mullinix, B.G. & Bernard, J.K. (2003). Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. Journal of Dairy Science, 86(1), 232–242. https://doi.org/10.3168/jds.S0022-0302(03)73602-9
  • Zampieri, M., Russo, S., di Sabatino, S., Michetti, M., Scoccimarro, E. & Gualdi, S. (2016). Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Science of the Total Environment, 571, 1330–1339. https://doi.org//10.1016/j.scitotenv.2016.07.008
  • Zimbelman, R.B., Baumgard, L.H. & Collier, R.J. (2010). Effects of encapsulated niacin on evaporative heat loss and body temperature in moderately heat-stressed lactating Holstein cows. Journal of Dairy Science, 93(6), 2387–2394. https://doi.org/10.3168/jds.2009-2557

Küresel İklim Değişiklikleri ve Süt Sığırı Yetiştiriciliği

Year 2024, Volume: 14 Issue: 1, 92 - 100, 28.06.2024
https://doi.org/10.53518/mjavl.1418769

Abstract

Küresel iklim değişiklikleri atmosfere salınan gazların sera etkisi oluşturması ile son zamanlarda tüm üretim sistemlerini yakından ilgilendiren bir konudur. Küresel ısınmanın önlenememesi bitki ve hayvan çeşitliliği, üretim sistemleri, ekosistemler ve gıda güvenliği üzerinde risk oluşturmaktadır. Bu ısınmanın etkileri (mevsime bağlı mera kullanımları, yem miktarı ve kalitesi, besleme yöntemleri, vb.) doğrudan ya da dolaylı olarak görülmektedir. Aşırı sıcak dönemlerin uzunluğu tüm dünyada etkisini göstermekte olup hayvancılık üretim sistemlerinde çeşitli zorluklara neden olmaktadır. Bu derlemede iklim değişikliğinden kaynaklanan süt sığırcılığı üretim sistemlerine yönelik gereksinimler ele alınmıştır. İklim değişikliklerinin süt sığırcılığı üzerine olan potansiyel etkilerinin hayvan refahı, beslenmesi, sağlığı ve üretim performansı olarak incelenmesi amaçlanmıştır. Doğrudan veya dolaylı olarak görülebilecek tüm etkiler hayvanın performansı ile ilişkili olmaktadır. Yüksek verimli süt inekleri bu etkilere karşı daha savunmasız bir durumda yer almaktadır. Bu etkilerle başa çıkılması için farklı düzeylerde faaliyete geçirilmesi gereken çeşitli adaptasyon yöntemleri ve ısı yükünü azaltma stratejileri planlanmalıdır. Yapılacak olan tüm değişiklikler üretim sistemlerindeki değişiklileri, farklı yönetim seçeneklerini ve sağlık yönetimlerini içermektedir.

References

  • Akbarabadi, M.A., Shabankareh, H.K., Abdolmohammadi, A. & Shahsavari, M.H. (2014). Effect of PGF2α and GnRH on the reproductive performance of postpartum dairy cows subjected to synchronization of ovulation and timed artificial insemination during the warm or cold periods of the year. Theriogenology, 82(3), 509–516. https://doi.org//10.1016/j.theriogenology.2014.05.005
  • Allen, J.D., Hall, L.W., Collier, R.J. & Smith, J.F. (2015). Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. Journal of Dairy Science, 98(1), 118–127. https://doi.org//10.3168/jds.2013-7704
  • Ammer, S., Lambertz, C. & Gauly, M. (2016). Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. Journal of Dairy Research, 83(2), 165–172. https://doi.org/10.1017/S0022029916000182
  • Ammer, S., Lambertz, C., von Soosten, D., Zimmer, K., Meyer, U., Dänicke, S. & Gauly, M. (2017). Impact of diet composition and temperature–humidity index on water and dry matter intake of high-yielding dairy cows. Journal of Animal Physiology and Animal Nutrition, 102(1), 103–113. https://doi.org/10.1111/jpn.12664
  • Atrian, P., ve Shahryar, H.A. (2012). Heat stress in dairy cows (a review). Research in Zoology, 2(4), 31-37.
  • Avendaño-Reyes, L., Álvarez-Valenzuela, F.D., Correa-Calderón, A., Algándar Sandoval, A., Rodríguez-González, E., Pérez-Velázquez, R., Macías-Cruz, U., Díaz-Molina, R., Robinson, P.H. & Fadel, J.G. (2010). Comparison of three cooling management systems to reduce heat stress in lactating Holstein cows during hot and dry ambient conditions. Livestock Science, 132(1-3), 48–52. https://doi.org/10.1016/j.livsci.2010.04.020
  • Bertocchi, L., Vitali, A., Lacetera, N., Nardone, A., Varisco, G., & Bernabucci, U. (2014). Seasonal variations in the composition of Holstein cow’s milk and temperature–humidity index relationship. Animal, 8(4), 667-674. https://doi.org/10.1017/S1751731114000032
  • Bett, B. Kiunga, P. Gachohi, J. Sindato, C. Mbotha, D. Robinson, T. Lindahl, J. & Grace, D. (2017). Effects of climate change on the occurrence and distribution of livestock diseases. Preventive Veterinary Medicine, 137, 119–129. https://doi.org/10.1016/j.prevetmed.2016.11.019
  • Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M. & Belyea. R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, 51(6), 479–491. https://doi.org/10.1051/animres:2002036
  • Calegari, F., Calamari, L. & Frazzi, E. (2012). Misting and fan cooling of the rest area in a dairy barn. International Journal of Biometeorology, 56(2), 287–295. https://dx.doi.org/10.1007/s00484-011-0432-7
  • Charlier, J., Ghebretinsae, A.H., Levecke, B., Ducheyne, E., Claerebout, E. & Vercruysse, J. (2016). Climate-driven longitudinal trends in pasture-borne helminth infections of dairy cattle. International Journal for Parasitology, 46(13-14), 881–888. https://doi.org//10.1016/j.ijpara.2016.09.001
  • Chen, S., Bai, Y., Lin, G., Huang, J. & Han, X. (2007). Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. Journal of Arid Environments, 71(1), 12–28. https://doi.org/10.1016/j.jaridenv.2007.02.006
  • Cook, N.B., Mentink, R.L., Bennett, T.B. & Burgi, K. (2007). The effect of heat stress and lameness on time budgets of lactating dairy cows. Journal of Dairy Science, 90(4), 1674–1682. https://doi.org/10.3168/jds.2006-634
  • Cowley, F.C., Barber, D.G., Houlihan, A.V. & Poppi, D.P. (2015). Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. Journal of Dairy Science, 98(4), 2356–2368. https://doi.org/10.3168/jds.2014-8442
  • Craine, J.M., Elmore, A.J., Olson, K.C. & Tolleson, D. (2010). Climate change and cattle nutritional stress. Global Change Biology, 16(10), 2901–2911. https://doi.org/10.1111/j.1365-2486.2009.02060.x
  • Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: a review. Veterinary World, 9(3), 260–268. https://doi.org/10.14202/vetworld.2016.260-268
  • Enemark, J.M.D., Jorgensen, R.J. & Enemark, P.S. (2002). Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: a review. Veterinarija ir zootechnika, 20(42), 16-29.
  • Fitzgerald, J.B., Brereton, A.J. & Holden, N.M. (2009). Assessment of the adaptation potential of grass-based dairy systems to climate change in Ireland – the maximised production scenario. Agricultural and Forest Meteorology, 149(2), 244–255. https://doi.org/10.1016/j.agrformet.2008.08.006
  • Galán, E., Llonch, P., Villagrá, A., Levit, H., Pinto, S. & Del Prado, A. (2018). A systematic review of non-productivity- related animal-based indicators of heat stress resilience in dairy cattle. Plos One, 13(11), 2562. https://doi.org/10.1371/journal.pone.0206520
  • Gauly, M., Bollwein, H., Breves, G., Brügemann, K., Dänicke, S., Daş, G., Demeler, J., Hansen, H., Isselstein J, König, S., Lohölter, M., Martinsohn, M., Meyer, U., Potthoff, M., Sanker, C., Schröder, B., Wrage, N., Meibaum, B., Samson- Himmelstjerna, G. Von, Stinshoff, H. & Wrenzycki, C. (2013). Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe – a review. Animal, 7(5), 843–859. https://doi.org/10.1017/S1751731112002352
  • Gauly, M. ve Ammer, S. (2020). Review: Challenges for dairy cow production systems arising from climate changes. Animal, 14(S1), S196–S203. https://doi.org/10.1017/S1751731119003239
  • Heinicke, J., Ibscher, S., Belik, V. & Amon, T. (2019). Cow individual activity response to the accumulation of heat load duration. Journal of Thermal Biology, 82, 23–32. https://doi.org/10.1016/j.jtherbio.2019.03.011
  • Holden, N.M., Brereton, A.J. & Fitzgerald, J.B. (2008). Impact of climate change on Irish agricultural production systems. In Climate change – refining the impacts for Ireland (ed. Environmental Protection Agency), (pp. 82– 131). Wexford: Environmental Protection Agency.
  • Honig, H., Ofer, L., Kaim, M., Jacobi, S., Shinder, D. & Gershon, E. (2016). The effect of cooling management on blood flow to the dominant follicle and estrous cycle length at heat stress. Theriogenology, 86(2), 626–634. https://doi.org/10.1016/j.theriogenology.2016.02.017
  • IPCC. (2014). Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 1–1132). Cambridge: Cambridge University Press.
  • Kadokawa, H., Sakatani, M. & Hansen, P.J. (2012). Perspectives on improvement of reproduction in cattle during heat stress in a future Japan. Animal Science Journal, 83(6), 439–445. https://doi.org/10.1111/j.1740- 0929.2012.01011.x
  • Kendall, P.E., Verkerk, G.A., Webster, J.R. & Tucker, C.B. (20079. Sprinklers and shade cool cows and reduce insect-avoidance behavior in pasture-based dairy systems. Journal of Dairy Science, 90(8), 3671–3680. https://doi.org/10.3168/jds.2006-766
  • Koyuncu, M. ve Akgün, H. (2018). Çiftlik hayvanları ve küresel iklim değişikliği arasındaki etkileşim. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 151-164.
  • Lacetera, N., Bernabucci, U., Ronchi, B. & Nardone, A. (1996). Body condition score, metabolic status and milk production of early lactating dairy cows exposed to warm environment. Rivista di Agricoltura Subtropicale e Tropicale 90(1), 43–55.
  • Lambertz, C., Sanker, C. & Gauly, M. (2014). Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. Journal of Dairy Science, 97(1), 319–329. https://doi.org/10.3168/jds.2013-7217
  • Laporta, J., Fabris, T.F., Skibiel, A.L., Powell, J.L., Hayen, M.J., Horvath, K., Miller-Cushon, E.K. & Dahl, G.E. (2017). In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. Journal of Dairy Science, 100(4), 2976–2984. https://doi.org//10.3168/jds.2016-11993
  • Legrand, A.L., von Keyserlingk, M.A.G. & Weary, D.M. 2009. Preference and usage of pasture versus free-stall housing by lactating dairy cattle. Journal of Dairy Science, 92(8), 3651–3658. https://doi.org/10.3168/jds.2008- 1733
  • Liang, D., Wood, C.L., McQuerry, K.J., Ray, D.L., Clark, J.D. & Bewley, J.M. (2013). Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. Journal of Dairy Science, 96(8), 5072–5081. https://doi.org/10.3168/jds.2012-6537
  • Liu, Z., Ezernieks, V., Wang, J., Arachchillage, N.W., Garner, J.B., Wales, W.J., Cocks, B.G. & Rochfort, S. (2017). Heat stress in dairy cattle alters lipid composition of milk. Scientific Reports, 7, 961. https://doi.org//10.1038/s41598- 017-01120-9
  • López-Gatius, F., Santolaria, P., Martino, A., Delétang, F. & De Rensis, F. (2006). The effects of GnRH treatment at the time of AI and 12 days later on reproductive performance of high producing dairy cows during the warm season in northeastern Spain. Theriogenology, 65(4), 820–830. https://doi.org/10.1016/j.theriogenology.2005.07.002
  • Ma, S., Lardy, B., Graux, A.I., Klumpp, K., Martin, R. & Bellocchi, G. (2015). Regionalsclae analysis of carbon and water cycles on managed grassland systems. Environmental Modelling & Software, 72, 356–371. https://doi.org/10.1016/j.envsoft.2015.03.007
  • Malama, E., Zeron, Y., Janett, F., Siuda, M., Roth, Z. & Bollwein, H. (2017). Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality. Theriogenology, 87, 79–90. https://doi.org/10.1016/j.theriogenology.2016.08.002
  • Mariani P, Zanzucchi G, Blanco P and Masoni M 1993. Variazioni stagionali del contenuto in fosforo del latte di massa di singoli allevamenti. L’industria del Latte, 29, 39–53.
  • Morgan, E., Charlier, J., Hendrickx, G., Biggeri, A., Catalan, D., Samson-Himmelstjerna, G von., Demeler, J., Müller, E., van Dijk, J., Kenyon, F., Skuce, P., Höglund, J., O’Kiely, P., van Ranst, B., Waal, T de., Rinaldi, L., Cringoli, G., Hertzberg, H., Torgerson, P., Wolstenholme, A. & Vercruysse, J. (2013). Global change and helminth infections in grazing ruminants in Europe: impacts, trends and sustainable solutions. Agriculture, 3(3), 484–502. https://doi.org/10.3390/agriculture3030484
  • Nabenishi, H., Ohta, H., Nishimoto, T., Morita, T., Ashizawa, K. & Tsuzuki, Y. (2011). Effect of the temperature- humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan. Journal of Reproduction, 57(4), 450–456. https://doi.org/10.1262/jrd.10-135T
  • Nikkhah, A., Furedi, C.J., Kennedy, A.D., Scott, S.L., Wittenberg, K.M., Crow, G.H. & Plaizier, J.C. (2011). Morning vs. evening feed delivery for lactating dairy cows. Canadian Journal of Animal Science, 91(1), 113–122. https://doi.org/10.4141/CJAS10012
  • Ominski, K.H., Kennedy, A.D., Wittenberg, K.M. & Nia, S.A.M. (2002). Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress. Journal of Dairy Science, 85(4), 730–737. https://doi.org/10.3168/jds.S0022-0302(02)74130-1
  • Paes, V.M., Vieira, L.A., Correia, H.H.V., Sa, N.A.R., Moura, A.A.A., Sales, A.D., Rodrigues, A.P.R., Magalhães-Padilha, D.M., Santos, F.W., Apgar, G.A., Campello, C.C., Camargo, L.S.A. & Figueiredo, J.R. (2016). Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulusoocyte complex. Theriogenology, 86(4), 994–1003. https://doi.org/10.1016/j.theriogenology.2016.03.027
  • Perring, M.P., Cullen, B.R., Johnson, I.R. & Hovenden, M.J. (2010). Modelled effects of rising CO2 concentration and climate change on native perennial grass and sown grass-legume pastures. Climate Research, 42(1), 65–78.
  • Phelan, P., Morgan, E.R., Rose, H., Grant, J. & O’Kiely, P. (2016). Predictions of future grazing season length for European dairy, beef and sheep farms based on regression with bioclimatic variables. Journal of Agricultural Science, 154(5), 765–781. https://doi.org/10.1017/S0021859615000830
  • Polsky, L. ve von Keyserlingk, M.A.G. (2017). Invited review: effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645–8657. https://doi.org/10.3168/jds.2017-12651
  • Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J.L. & Collier, R.J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707–728. https://doi.org/10.1017/S1751731111002448
  • Rust, J.M. (2019). The impact of climate change on extensive and intensive livestock production systems. Animal Frontiers, 9(1), 20–25. https://doi.org/10.1093/af/vfy028
  • Sabés-Alsina, M., Lundeheim, N., Johannisson, A., López-Béjar, M. & Morrell, J.M. (2019). Relationships between climate and sperm quality in dairy bull semen: a retrospective analysis. Journal of Dairy Science, 102(6), 5623– 5633. https://doi.org/10.3168/jds.2018-15837
  • Safa, S., Kargar, S., Moghaddam, G.A., Ciliberti, M.G. & Caroprese, M. (2019). Heat stress abatement during the postpartum period: effects on whole lactation milk yield, indicators of metabolic status, inflammatory cytokines, and biomarkers of the oxidative stress. Journal of Animal Science, 97(1), 122–132. https://doi.org/10.1093/jas/sky408
  • Sakatani, M., Yamanaka, K., Balboula, A.Z., Takenouchi, N. & Takahashi, M. (2015). Heat stress during in vitro fertilization decreases fertilization success by disrupting anti-polyspermy systems of the oocytes. Molecular Reproduction and Development, 82(1), 36–47. https://doi.org/10.1002/mrd.22441
  • Sanker, C., Lambertz, C. & Gauly, M. (2013). Climatic effects in Central Europe on the frequency of medical treatments of dairy cows. Animal, 7(2), 316–321. https://doi.org/10.1017/S1751731112001668
  • Schütz, K.E., Rogers, A.R., Cox, N.R., Webster, J.R. & Tucker, C.B. (2011). Dairy cattle prefer shade over sprinklers: effects on behaviour and physiology. Journal of Dairy Science, 94(1), 273–283. https://doi.org/10.3168/jds.2010- 3608
  • Solymosi, N., Torma, C., Kern, A., Maróti-Agóts, Á., Barcza, Z., Könyves, L., Berke, O. & Reiczigel, J. (2010). Changing climate in Hungary and trends in the annual number of heat stress days. International Journal of Biometeorology, 54, 423–431. https://doi.org/10.1007/s00484-009-0293-5
  • Testa, F., Marano, G., Ambrogi, F., Boracchi, P., Casula, A., Biganzoli, E. & Moroni, P. (2017). Study of the association of atmospheric temperature and relative humidity with bulk tank milk somatic cell count in dairy herds using generalized additive mixed models. Research in Veterinary Science, 114, 511–517. https://doi.org/10.1016/j.rvsc.2017.09.027
  • Van Laer, E., Moons, C.P., Ampe, B., Sonck, B., Vandaele, L., De Campeneere, S. & Tuyttens, F.A. (2015). Effect of summer conditions and shade on behavioural indicators of thermal discomfort in Holstein dairy and Belgian Blue beef cattle on pasture. Animal, 9(9), 1536-1546. https://doi.org/10.1017/S1751731115000804
  • Vercruysse, J., Charlier, J., van Dijk, J., Morgan, E.R., Geary, T., Samson-Himmelstjerna, G von. & Claerebout, E. (2018). Control of helminth ruminant infections by 2030. Parasitology, 145(13), 1655–1664. https://doi.org/10.1017/S003118201700227X
  • Wang, J.P., Bu, D.P., Wang, J.Q., Huo, X.K., Guo, T.J., Wei, H.Y., Zhou, L.Y., Rastani, R.R., Baumgard, L.H. & Li, F.D. (2010). Effect of saturated fatty acid supplementation on production and metabolism indices in heat-stressed mid- lactation dairy cows. Journal of Dairy Science, 93(9), 4121–4127. https://doi.org//10.3168/jds.2009-2635
  • West, J.W., Mullinix, B.G. & Bernard, J.K. (2003). Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. Journal of Dairy Science, 86(1), 232–242. https://doi.org/10.3168/jds.S0022-0302(03)73602-9
  • Zampieri, M., Russo, S., di Sabatino, S., Michetti, M., Scoccimarro, E. & Gualdi, S. (2016). Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Science of the Total Environment, 571, 1330–1339. https://doi.org//10.1016/j.scitotenv.2016.07.008
  • Zimbelman, R.B., Baumgard, L.H. & Collier, R.J. (2010). Effects of encapsulated niacin on evaporative heat loss and body temperature in moderately heat-stressed lactating Holstein cows. Journal of Dairy Science, 93(6), 2387–2394. https://doi.org/10.3168/jds.2009-2557
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Animal Science, Genetics and Biostatistics
Journal Section Review Article
Authors

Onur Erzurum 0000-0001-7074-8573

Publication Date June 28, 2024
Submission Date January 12, 2024
Acceptance Date February 27, 2024
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Erzurum, O. (2024). Küresel İklim Değişiklikleri ve Süt Sığırı Yetiştiriciliği. Manas Journal of Agriculture Veterinary and Life Sciences, 14(1), 92-100. https://doi.org/10.53518/mjavl.1418769
AMA Erzurum O. Küresel İklim Değişiklikleri ve Süt Sığırı Yetiştiriciliği. MJAVL. June 2024;14(1):92-100. doi:10.53518/mjavl.1418769
Chicago Erzurum, Onur. “Küresel İklim Değişiklikleri Ve Süt Sığırı Yetiştiriciliği”. Manas Journal of Agriculture Veterinary and Life Sciences 14, no. 1 (June 2024): 92-100. https://doi.org/10.53518/mjavl.1418769.
EndNote Erzurum O (June 1, 2024) Küresel İklim Değişiklikleri ve Süt Sığırı Yetiştiriciliği. Manas Journal of Agriculture Veterinary and Life Sciences 14 1 92–100.
IEEE O. Erzurum, “Küresel İklim Değişiklikleri ve Süt Sığırı Yetiştiriciliği”, MJAVL, vol. 14, no. 1, pp. 92–100, 2024, doi: 10.53518/mjavl.1418769.
ISNAD Erzurum, Onur. “Küresel İklim Değişiklikleri Ve Süt Sığırı Yetiştiriciliği”. Manas Journal of Agriculture Veterinary and Life Sciences 14/1 (June 2024), 92-100. https://doi.org/10.53518/mjavl.1418769.
JAMA Erzurum O. Küresel İklim Değişiklikleri ve Süt Sığırı Yetiştiriciliği. MJAVL. 2024;14:92–100.
MLA Erzurum, Onur. “Küresel İklim Değişiklikleri Ve Süt Sığırı Yetiştiriciliği”. Manas Journal of Agriculture Veterinary and Life Sciences, vol. 14, no. 1, 2024, pp. 92-100, doi:10.53518/mjavl.1418769.
Vancouver Erzurum O. Küresel İklim Değişiklikleri ve Süt Sığırı Yetiştiriciliği. MJAVL. 2024;14(1):92-100.