Vermikompost ve Sıvı Deniz Yosunu Ekstraktı Uygulamalarının Arpa (Hordeum vulgaris L.) Rizosferinde Mikrobiyal Solunum ve β-glukosidaz Aktiviteye Etkisi
Year 2024,
Volume: 14 Issue: 2, 125 - 133, 25.12.2024
Çiğdem Küçük
,
Sinem Pek
Abstract
Kimyasal gübre kullanımı toprağın yapısını bozduğu ve sürdürülebilir bitki gelişimini olumsuz etkilediği için günümüzde kimyasal gübre kullanımına alternatif olarak organik gübre kullanımı önem kazanmıştır. Çalışmamızda sıvı yosun gübresi ve vermikompost gübresi kullanılarak arpa gelişimi ve kök bölgesi mikrobiyolojik özelliklerine etkisi incelenmiştir. Deneme serada tesadüf parselleri deneme desenine göre 3 tekrarlı olarak yürütülmüştür. Vermikompostun 4 dozu (kontrol, % 10, % 20 ve % 40), sıvı yosun gübresinin 4 dozu (kontrol, % 1, % 2 ve % 3) ve vermikompost ile sıvı yosun gübresinin kombinasyonu ayrı ayrı topraklara uygulanmıştır. Tohum ekiminden 60 gün sonra bitkiler hasat edilmiştir. Uygulamalar yeşil aksam ve kök ağırlığını, bitki boyu ve kök uzunluğunu artırmıştır. Yaprakların klorofil içerikleri vermikompost ve sıvı yosun gübresi uygulaması ile kontrole göre artmıştır. Vermikompostun ve sıvı yosun gübresinin artan dozları rizosferdeki mikrobiyal solunum ve β-glukosidaz aktiviteyi kontrole göre önemli ölçüde artırmış, en yüksek artış vermikompost %40 ile yosun gübresinin %3’lük interaksiyonunda elde edilmiştir.
Ethical Statement
“Vermikompost ve Sıvı Deniz Yosunu Ekstraktı Uygulamalarının Arpa (Hordeum vulgaris L.) Rizosferinde Mikrobiyal Solunum ve β-glukosidaz Aktiviteye Etkisi” başlıklı çalışmanın yazım sürecinde bilimsel kurallara, etik ve alıntı kurallarına uyulmuş; toplanan veriler üzerinde herhangi bir tahrifat yapılmamış ve bu çalışma herhangi başka bir akademik yayın ortamına değerlendirme için gönderilmemiştir. Bu araştırma doküman analizi ve betimsel incelemeye dayalı olarak yapıldığından etik kurul kararı zorunluluğu bulunmamaktadır.
Project Number
Bu araştırmanın yapılmasında maddi destek sağlayan Harran Üniversitesi Bilimsel Araştırma Projeleri Birimine (HÜBAP-21256) teşekkürlerimizi sunarız.
References
- Adegbeye, M.J., Reddy, P.R.K., Obaisi, A.I., Elghandour, M.M.M.Y., Oyebamiji, K.J., & Salem, A.Z.M., (2019).
Sustainable agriculture options for production, nutritional mitigation of greenhouse gasses and pollution,
and nutrient recycling in emerging and transitional nations-an overview. Journal of Cleaner Production,
118, 319–314. https://doi.org/10.1016/j.jclepro.2019.118319
- Anderson, J.P.E. (1982). Soil respiration. In: methods of soil analysis, part 2, chemical and microbiological
properties (Ed. A.L. Page). ASA-SSSA, Madison, Winsconsin. pp. 831-871.
- Arioli, T., Mattner, S.W., & Winberg, P.C. (2015). Applications of seaweed extracts in Australian agriculture:
Past, present and future. Journal of Applied Phycology, 275, 2007-2015
- Banerjee, S., Walder, F., Buchi, L., Meyer, M., Held, A. Y., & Gattinger, A. (2019). Agricultural intensification
reduces microbial network complexity and the abundance of keystone taxa in roots. Multidisciplinary
Journal of Microbial Ecology, 13, 1722–1736. https://doi.org/10.1038/s41396-019-0383-2
- Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., & Mathieu, J. (2019). Vermicompost significantly affects
plant growth. a meta-analysis. Agronomy for Sustainable Development, 39(4), 1–15.
https://doi.org/10.1007/s13593-019-0579-x
- Choudhary, V.K., & Kumar, P.S. (2019). Weed suppression, nutrient leaching, water use and yield of turmeric
(Curcuma longa l.) under different land configurations and mulches. Journal of Cleaner Production, 210,
795–803. https://doi.org/10.1016/j.jclepro.2018.11.071
- Craigie J.S. (2011). Seaweed extracts stimuli in plant science and agriculture Journal of Applied Phycology,
233, 371-393, https://doi.org/10.1007/s10811-010-9560-4
- Demirsoy, M., & Aydın, M. (2020). The Quantitative Effects of Liquid Vermicompost and Seaweed Practices
on the Seedling Quality of Organic Tomato (Solanum lycopersicum L.). International Journal of
Environmental Trends (IJENT) 4, 17-27.
- Dominguez, J. (2004). State-of-the Art and New Perspectives On Vermicomposting Research. (2nd ed),
CRC Press, Boca Raton, pp. 401-424, https://doi.org/10.1201/9781420039719.ch20
- Du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia
Horticulture, 196, 3-14, https://doi.org/10.1016/j.scienta.2015.09.021
- Gupta, R., Singh, A., Srivastava, M., Shanker, K., & Pandey, R. (2019). Plant-microbe interactions endorse
growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode
stress. Microbiological Research, 218, 87–96. https://doi.org/10.1016/j.micres.2018.10.006
- Penuelas, J., Coello, F., & Sardans, J. (2023). A better use of fertilizers is needed for global food security and
environmental sustainability. Agriculture Food Security, 12, 1-9. https://doi.org/10.1186/s40066-023-00409-
5
- Frank, S., Havlík, P., Stehfest, E., van Meijl, H., Witzke, P., & Perez-Domínguez, I. (2019). Agricultural non-CO2
emission reduction potential in the context of the 1.5°C target. Nature Climate Change, 9, 66–72.
https://doi.org/ 10.1038/s41558-018-0358-8
- Hao, P. F., Qiu, C. W., Ding, G., Vincze, E., Zhang, G., & Zhang, Y. (2020). Agriculture organic wastes fermentation
CO2 enrichment in greenhouse and the fermentation residues improve growth, yield and fruit quality in
tomato. Journal of Cleaner Production, 275, 123885. https://doi.org/ 10.1016/j.jclepro.2020.123885
- Hu, R., Liu, Y., Chen, T., Zheng, Z., Peng, G., & Zou, Y. (2021). Responses of soil aggregates, organic carbon, and
crop yield to short-term intermittent deep tillage in southern China. Journal of Cleaner Production, 298,
126767. https://doi.org/10.1016/j.jclepro.2021.126767
- Ji, R., Dong, G., Shi, W., & Min, J. (2017). Effects of liquid organic fertilizers on plant growth and rhizosphere soil
characteristics of chrysanthemum. Sustainability, (9), 841-857 https://doi.org/10.3390/su9050841
- Julia, I., Oscar, M., Analia, L., & Guilherme, J. (2020). Biofertilization with Macrocystis pyrifera algae extracts
combined with PGPR enhanced growth in Lactuca sativa seedlings. Journal of Applied Phycology, (32),
4361-4371. https://doi.org/10.1007/s10811-020-02202-4
- Khan, A.A., Jilani, G., Akhtar, M.S., Naqvi, S.M.S., & Rasheed, M. (2009). Phosphorus Solubilizing Bacteria:
occurrence, Mechanisms and their Role in Crop Production. Journal of Agricultural and Biological Science,
11, 48-58
- Kumari, R., Kaur, I., & Bhatnagar, A.K. (2011). Effect of aqueous extract of Sargassum johnstonii Setchell
Gardner on growth, yield and quality of Lycopersicon esculentum Mill. Journal of Applied Phycology, 233,
623-633, https://doi.org/10.1007/s10811-011-9651-x
- Meng, C., Gu, X., Liang, H., Wu, M., Wu, Q., Yang, L. (2022). Optimized preparation and high-efficient
application of seaweed fertilizer on peanut. Journal Agriculture Research, 7, 100275. doi:
10.1016/j.jafr.2022.100275
- Mukherjee, A., Gaurav, A.K., Patel, A.K., Singh, S., Chouhan, G.K., & Lepcha, A. (2021). Unlocking the potential
plant growth-promoting properties of chickpea (Cicer arietinum l.) seed endophytes bio-inoculants for
improving soil health and crop production. Land Degradation & Development, 32 (15), 4362–4374. doi:
10.1002/ldr.4042
- Ngoroyemoto, N., Gupta, S., Kulkarni, M. G., Finnie, J. F., Van Staden, J. (2019). Effect of organic biostimulants
on the growth and biochemical composition of Amaranthus hybridus. South African Journal of Botany, 124,
87–93. https://doi.org/10.1016/j.sajb.2019.03.040
- Parastesh, F., Alikhani, H. A., & Etesami, H. (2019). Vermicompost enriched with phosphate–solubilizing
bacteria provide the plant with enough phosphorus in sequential cropping under calcareous soil
conditions. Journal of Cleaner Production, 221, 27–37. https://doi.org/10.1016/j.jclepro.2019.02.234
- Raj, Y., Ali, N., Pati, A.M., & Kumar, R. (2022). Cleaner production technologies for the amelioration of soil
health, biomass and secondary metabolites in Ocimum basilicum L. under Indian Western Himalaya.
Frontier Plant Science, 13, 1-21. https://doi.org/10.3389/fpls.2022.976295
- Rathore, S., & Kumar, R. (2021). Agronomic interventions affect the growth, yield, and essential oil
composition of German chamomile (Matricaria chamomilla l.) in the western himalaya. Industrial Crops
and Products, 171, 113873. https://doi.org/10.1016/j.indcrop.2021.113873
- Raza, Q., Rehim, A., Bashir, M.A., Razai H.M.A., Aon, M., Geng, Y., Moustafa, M., Alshaharni, M.O., Ali, H., & Lucas,
R.S. (2024). Identifying the abilities of biostimulants to improve vegetable production compared with
conventional fertilizer. Frontiers in Sustainable Food Systems, 8, 1-9.
https://doi.org/10.3389/fsufs.2024.1345259
- Ruiz, J.L., & Salas, M.C. (2019). Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool
in Container Crop Production. Agronomy, 9(11),705, https://doi.org/10.3390/agronomy9110705
- Sahab, S., Ibha, S.,Srivastava, V., Puneet, C., Singh, R., & Prasad, V. (2020). Potential risk assessment of soil
salinity to agroecosystem sustainability: current status and management strategies. Science of the Total
Environment, 764 (2020), pp. 144-164, https://doi.org/10.1016/j.scitotenv.2020.144164
- Sarma, B., Farooq, M., Gogoi, N., Borkotoki, B., Kataki, R., & Garg, A. (2018). Soil organic carbon dynamics in
wheat-green gram crop rotation amended with vermicompost and biochar in combination with inorganic
fertilizers: A comparative study. Journal of Cleaner Production, 201, 471–480.
https://doi.org/10.1016/j.jclepro.2018.08.004
- Trivedi, K., Vijay Anand, K. G., Kubavat, D., Patidar, R., & Ghosh, A. (2018). Drought alleviatory potential of
Kappaphycus seaweed extract and the role of the quaternary ammonium compounds as its constituents
towards imparting drought tolerance in Zea mays. Journal of Applied Phycology, 30 (3), 2001–2015.
https://doi.org/ 10.1007/s10811-017-1375-0
- Trivedi, K., Kumar, R., Vijay Anand, K. G., Bhojani, G., Kubavat, D., & Ghosh, A. (2022). Structural and functional
changes in soil bacterial communities by drifting spray application of a commercial red seaweed extract
as revealed by metagenomics. Archives of Microbiology, 204 (1), 1–21. https://doi.org/10.1007/s00203-021-
02644-5
- Yasmin, S., & D'Souza, D. (2007). Effect of pesticides on the reproductive output of Eisenia fetida. The Bulletin
of EnvironmentalContamination and Toxicology, 795, 529-532, https://doi.org/110.1007/s00128-007-9269-5
- Voko, M.P., Kulkarni, M., Ngoroyemoto, N., Gupta, S., Finnie, J., & van Staden, J. (2022). Vermicompost leachate,
seaweed extract and smoke-water alleviate drought stress in cowpea by influencing phytochemicals,
compatible solutes and photosynthetic pigments. Plant Growth Regulation. 97, 327-342
https://doi.org/10.1007/s10725-022-00815-y
- Zhang, Q., Song, Y., Wu, Z., Yan, X., Gunina, A., & Kuzyakov, Y. (2020). Effects of six-year biochar amendment
on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation.
Journal of Cleaner Production. 242, 118435. https://doi.org/10.1016/j.jclepro.2019.118435
Effect of Vermicompost and Liquid Seaweed Extract Applications on Microbial Respiration and β-glucosidase Activity in Barley (Hordeum vulgaris L.) Rhizosphere
Year 2024,
Volume: 14 Issue: 2, 125 - 133, 25.12.2024
Çiğdem Küçük
,
Sinem Pek
Abstract
Since the use of chemical fertilizers disrupts the structure of the soil and negatively affects sustainable plant growth, the use of organic fertilizers has gained importance as an alternative to the use of chemical fertilizers. In our study, the effects of liquid seaweed fertilizer and vermicompost fertilizer on barley growth and root zone microbiological properties were investigated. The experiment was carried out in the greenhouse according to the randomized plot design with 3 replications. 4 doses of vermicompost (control, 10%, 20% and 40%), 4 doses of liquid seaweed fertilizer (control, 1%, 2% and 3%) and the combination of vermicompost and liquid seaweed fertilizer were applied to the soil. The plants were harvested 60 days after sowing. The applications increased the green parts and root weight, plant height and root length. The chlorophyll contents of the leaves increased with the applications of vermicompost and liquid seaweed fertilizer compared to the control. Increasing doses of vermicompost and liquid seaweed fertilizer significantly increased the microbial respiration and β-glucosidase activity in the rhizosphere compared to the control, the highest increase was obtained in the interaction of 40% vermicompost and 3% seaweed fertilizer.
Ethical Statement
“Vermikompost ve Sıvı Deniz Yosunu Ekstraktı Uygulamalarının Arpa (Hordeum vulgaris L.) Rizosferinde Mikrobiyal Solunum ve β-glukosidaz Aktiviteye Etkisi” başlıklı çalışmanın yazım sürecinde bilimsel kurallara, etik ve alıntı kurallarına uyulmuş; toplanan veriler üzerinde herhangi bir tahrifat yapılmamış ve bu çalışma herhangi başka bir akademik yayın ortamına değerlendirme için gönderilmemiştir. Çalışmamızda herhangi bir canlıya ait veri bulunmadığından etik kurul izni gerekmemektedir.
Supporting Institution
Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
Bu araştırmanın yapılmasında maddi destek sağlayan Harran Üniversitesi Bilimsel Araştırma Projeleri Birimine (HÜBAP-21256) teşekkürlerimizi sunarız.
Thanks
Bu araştırmanın yapılmasında maddi destek sağlayan Harran Üniversitesi Bilimsel Araştırma Projeleri Birimine (HÜBAP-21256) teşekkürlerimizi sunarız.
References
- Adegbeye, M.J., Reddy, P.R.K., Obaisi, A.I., Elghandour, M.M.M.Y., Oyebamiji, K.J., & Salem, A.Z.M., (2019).
Sustainable agriculture options for production, nutritional mitigation of greenhouse gasses and pollution,
and nutrient recycling in emerging and transitional nations-an overview. Journal of Cleaner Production,
118, 319–314. https://doi.org/10.1016/j.jclepro.2019.118319
- Anderson, J.P.E. (1982). Soil respiration. In: methods of soil analysis, part 2, chemical and microbiological
properties (Ed. A.L. Page). ASA-SSSA, Madison, Winsconsin. pp. 831-871.
- Arioli, T., Mattner, S.W., & Winberg, P.C. (2015). Applications of seaweed extracts in Australian agriculture:
Past, present and future. Journal of Applied Phycology, 275, 2007-2015
- Banerjee, S., Walder, F., Buchi, L., Meyer, M., Held, A. Y., & Gattinger, A. (2019). Agricultural intensification
reduces microbial network complexity and the abundance of keystone taxa in roots. Multidisciplinary
Journal of Microbial Ecology, 13, 1722–1736. https://doi.org/10.1038/s41396-019-0383-2
- Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., & Mathieu, J. (2019). Vermicompost significantly affects
plant growth. a meta-analysis. Agronomy for Sustainable Development, 39(4), 1–15.
https://doi.org/10.1007/s13593-019-0579-x
- Choudhary, V.K., & Kumar, P.S. (2019). Weed suppression, nutrient leaching, water use and yield of turmeric
(Curcuma longa l.) under different land configurations and mulches. Journal of Cleaner Production, 210,
795–803. https://doi.org/10.1016/j.jclepro.2018.11.071
- Craigie J.S. (2011). Seaweed extracts stimuli in plant science and agriculture Journal of Applied Phycology,
233, 371-393, https://doi.org/10.1007/s10811-010-9560-4
- Demirsoy, M., & Aydın, M. (2020). The Quantitative Effects of Liquid Vermicompost and Seaweed Practices
on the Seedling Quality of Organic Tomato (Solanum lycopersicum L.). International Journal of
Environmental Trends (IJENT) 4, 17-27.
- Dominguez, J. (2004). State-of-the Art and New Perspectives On Vermicomposting Research. (2nd ed),
CRC Press, Boca Raton, pp. 401-424, https://doi.org/10.1201/9781420039719.ch20
- Du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia
Horticulture, 196, 3-14, https://doi.org/10.1016/j.scienta.2015.09.021
- Gupta, R., Singh, A., Srivastava, M., Shanker, K., & Pandey, R. (2019). Plant-microbe interactions endorse
growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode
stress. Microbiological Research, 218, 87–96. https://doi.org/10.1016/j.micres.2018.10.006
- Penuelas, J., Coello, F., & Sardans, J. (2023). A better use of fertilizers is needed for global food security and
environmental sustainability. Agriculture Food Security, 12, 1-9. https://doi.org/10.1186/s40066-023-00409-
5
- Frank, S., Havlík, P., Stehfest, E., van Meijl, H., Witzke, P., & Perez-Domínguez, I. (2019). Agricultural non-CO2
emission reduction potential in the context of the 1.5°C target. Nature Climate Change, 9, 66–72.
https://doi.org/ 10.1038/s41558-018-0358-8
- Hao, P. F., Qiu, C. W., Ding, G., Vincze, E., Zhang, G., & Zhang, Y. (2020). Agriculture organic wastes fermentation
CO2 enrichment in greenhouse and the fermentation residues improve growth, yield and fruit quality in
tomato. Journal of Cleaner Production, 275, 123885. https://doi.org/ 10.1016/j.jclepro.2020.123885
- Hu, R., Liu, Y., Chen, T., Zheng, Z., Peng, G., & Zou, Y. (2021). Responses of soil aggregates, organic carbon, and
crop yield to short-term intermittent deep tillage in southern China. Journal of Cleaner Production, 298,
126767. https://doi.org/10.1016/j.jclepro.2021.126767
- Ji, R., Dong, G., Shi, W., & Min, J. (2017). Effects of liquid organic fertilizers on plant growth and rhizosphere soil
characteristics of chrysanthemum. Sustainability, (9), 841-857 https://doi.org/10.3390/su9050841
- Julia, I., Oscar, M., Analia, L., & Guilherme, J. (2020). Biofertilization with Macrocystis pyrifera algae extracts
combined with PGPR enhanced growth in Lactuca sativa seedlings. Journal of Applied Phycology, (32),
4361-4371. https://doi.org/10.1007/s10811-020-02202-4
- Khan, A.A., Jilani, G., Akhtar, M.S., Naqvi, S.M.S., & Rasheed, M. (2009). Phosphorus Solubilizing Bacteria:
occurrence, Mechanisms and their Role in Crop Production. Journal of Agricultural and Biological Science,
11, 48-58
- Kumari, R., Kaur, I., & Bhatnagar, A.K. (2011). Effect of aqueous extract of Sargassum johnstonii Setchell
Gardner on growth, yield and quality of Lycopersicon esculentum Mill. Journal of Applied Phycology, 233,
623-633, https://doi.org/10.1007/s10811-011-9651-x
- Meng, C., Gu, X., Liang, H., Wu, M., Wu, Q., Yang, L. (2022). Optimized preparation and high-efficient
application of seaweed fertilizer on peanut. Journal Agriculture Research, 7, 100275. doi:
10.1016/j.jafr.2022.100275
- Mukherjee, A., Gaurav, A.K., Patel, A.K., Singh, S., Chouhan, G.K., & Lepcha, A. (2021). Unlocking the potential
plant growth-promoting properties of chickpea (Cicer arietinum l.) seed endophytes bio-inoculants for
improving soil health and crop production. Land Degradation & Development, 32 (15), 4362–4374. doi:
10.1002/ldr.4042
- Ngoroyemoto, N., Gupta, S., Kulkarni, M. G., Finnie, J. F., Van Staden, J. (2019). Effect of organic biostimulants
on the growth and biochemical composition of Amaranthus hybridus. South African Journal of Botany, 124,
87–93. https://doi.org/10.1016/j.sajb.2019.03.040
- Parastesh, F., Alikhani, H. A., & Etesami, H. (2019). Vermicompost enriched with phosphate–solubilizing
bacteria provide the plant with enough phosphorus in sequential cropping under calcareous soil
conditions. Journal of Cleaner Production, 221, 27–37. https://doi.org/10.1016/j.jclepro.2019.02.234
- Raj, Y., Ali, N., Pati, A.M., & Kumar, R. (2022). Cleaner production technologies for the amelioration of soil
health, biomass and secondary metabolites in Ocimum basilicum L. under Indian Western Himalaya.
Frontier Plant Science, 13, 1-21. https://doi.org/10.3389/fpls.2022.976295
- Rathore, S., & Kumar, R. (2021). Agronomic interventions affect the growth, yield, and essential oil
composition of German chamomile (Matricaria chamomilla l.) in the western himalaya. Industrial Crops
and Products, 171, 113873. https://doi.org/10.1016/j.indcrop.2021.113873
- Raza, Q., Rehim, A., Bashir, M.A., Razai H.M.A., Aon, M., Geng, Y., Moustafa, M., Alshaharni, M.O., Ali, H., & Lucas,
R.S. (2024). Identifying the abilities of biostimulants to improve vegetable production compared with
conventional fertilizer. Frontiers in Sustainable Food Systems, 8, 1-9.
https://doi.org/10.3389/fsufs.2024.1345259
- Ruiz, J.L., & Salas, M.C. (2019). Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool
in Container Crop Production. Agronomy, 9(11),705, https://doi.org/10.3390/agronomy9110705
- Sahab, S., Ibha, S.,Srivastava, V., Puneet, C., Singh, R., & Prasad, V. (2020). Potential risk assessment of soil
salinity to agroecosystem sustainability: current status and management strategies. Science of the Total
Environment, 764 (2020), pp. 144-164, https://doi.org/10.1016/j.scitotenv.2020.144164
- Sarma, B., Farooq, M., Gogoi, N., Borkotoki, B., Kataki, R., & Garg, A. (2018). Soil organic carbon dynamics in
wheat-green gram crop rotation amended with vermicompost and biochar in combination with inorganic
fertilizers: A comparative study. Journal of Cleaner Production, 201, 471–480.
https://doi.org/10.1016/j.jclepro.2018.08.004
- Trivedi, K., Vijay Anand, K. G., Kubavat, D., Patidar, R., & Ghosh, A. (2018). Drought alleviatory potential of
Kappaphycus seaweed extract and the role of the quaternary ammonium compounds as its constituents
towards imparting drought tolerance in Zea mays. Journal of Applied Phycology, 30 (3), 2001–2015.
https://doi.org/ 10.1007/s10811-017-1375-0
- Trivedi, K., Kumar, R., Vijay Anand, K. G., Bhojani, G., Kubavat, D., & Ghosh, A. (2022). Structural and functional
changes in soil bacterial communities by drifting spray application of a commercial red seaweed extract
as revealed by metagenomics. Archives of Microbiology, 204 (1), 1–21. https://doi.org/10.1007/s00203-021-
02644-5
- Yasmin, S., & D'Souza, D. (2007). Effect of pesticides on the reproductive output of Eisenia fetida. The Bulletin
of EnvironmentalContamination and Toxicology, 795, 529-532, https://doi.org/110.1007/s00128-007-9269-5
- Voko, M.P., Kulkarni, M., Ngoroyemoto, N., Gupta, S., Finnie, J., & van Staden, J. (2022). Vermicompost leachate,
seaweed extract and smoke-water alleviate drought stress in cowpea by influencing phytochemicals,
compatible solutes and photosynthetic pigments. Plant Growth Regulation. 97, 327-342
https://doi.org/10.1007/s10725-022-00815-y
- Zhang, Q., Song, Y., Wu, Z., Yan, X., Gunina, A., & Kuzyakov, Y. (2020). Effects of six-year biochar amendment
on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation.
Journal of Cleaner Production. 242, 118435. https://doi.org/10.1016/j.jclepro.2019.118435