Research Article
BibTex RIS Cite
Year 2023, , 158 - 165, 01.07.2023
https://doi.org/10.51354/mjen.1233063

Abstract

References

  • Abdelrahman M.A.E, Moaaz O., ”On the New Class of The Nonlinear Rational Difference Equations,” Electronic Journal of Mathematical Analysis and Applications, 6 (1), 117-125, (2018).
  • Ahmed A.E.S., Iriˇcanin B., KosmalaW., Stevi´c S., Smarda Z, ”Note on constructing a family of solvable sine-type difference equations,” Advances in Difference Equations, 2021(1), 1-11, (2021).
  • Agarwal R.P., ”Difference Equations and Inequalities,” Marcel Dekker, New York, 1992, 2nd edition, 2000.
  • Agarwal R.P.and Elsayed E.M., ”Periodicity and stability of solutions of higher order rational difference equation,” Advanced Studies in Contemporary Mathematics, 17(2), 181-201, (2008).
  • Agarwal R.P.and Elsayed E.M., ”On the solution of fourthorder rational recursive sequence,” Advanced Studies in Contemporary Mathematics, 20(4), 525-545 (2010).
  • Aloqeili M., ”Dynamics of a rational difference equation,” Applied Mathematics and Computation, 176(2), 768-774, (2006).
  • Amleh A.M., Grove G.A., Ladas G., Georgiou, D.A., ”On the recursive sequence 𝑦𝑚+1 = 𝛼 + 𝑦𝑚−1 𝑦𝑚 ,” J. of Math. Anal. App. 233, 790-798 (1999).
  • Belhannache F., Touafek N., Abo-Zeid, R., ”On a higherorder rational difference equation,” J. Appl. Math. Informatics, 34(5-6), 369-382, (2016).
  • Bilgin A., Kulenovi´c M.R.S., ”Global asymptotic stability for discrete single species population models,” Discrete Dynamics in Nature and Society, 2017. Article ID 5963594, 15.
  • Cinar C., ”On the positive solutions of the difference equation 𝜓𝑚+1 = 𝑎𝜓𝑚−1 1+𝑏𝜓𝑚𝜓𝑚−1 ,” J. of App. Math. Comp., 156(2), 587-590 (2004).
  • Cinar C., Mansour T., Yalcinkaya I., On the difference equation of higher order,” Utilitas Mathematica, 92, 161- 166 (2013).
  • Das S.E., Bayram M., ”On a system of rational difference equations,” World Applied Sciences Journal, 10(11), 1306-1312 (2010).
  • DeVault R., Ladas G., Schultz S.W., ”On the recursive sequence 𝜓𝑚+1 = 𝐴 𝜓𝑚 + 1 𝜓𝑚−2 ,” Proc.Amer. Math. Soc.126 (11) 3257-3261 (1998).
  • Elsayed E.M., ”On The Difference Equation 𝜓𝑚+1 = 𝜓𝑚−5 −1+𝜓𝑚−2𝜓𝑚−5 ,” Inter. J. Contemp. Math. Sci., 3 (33) 1657-1664, (2008).
  • Gibbons C.H., Kulenovic M.R.S., Ladas G., ”On the recursive sequence 𝛼+𝛽𝜓𝑚−1 𝜒+𝛽𝜓𝑚−1 ,” Math. Sci. Res. Hot-Line, 4(2), 1-11 (2000).
  • Ibrahim T.F., Khan A.Q., Ogul, B., S¸ims¸ek, D., ”Closed- Form Solution of a Rational Difference Equation,” Mathematical Problems in Engineering, 2021.
  • Ibrahim T.F., Khan A.Q., Ibrahim, A., ”Qualitative behavior of a nonlinear generalized recursive sequence with delay,” Mathematical Problems in Engineering, (2021).
  • Khan A.Q., El-Metwally H., ”Global dynamics, boundedness, and semicycle analysis of a difference equation,” Discrete Dynamics in Nature and Society, (2021).
  • Kocic V.L., Ladas G., ”Global behavior of nonlinear difference equations of higher order with applications,” volume 256 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993.
  • Kulenovic M.R.S., Ladas G., SizerW.S., ”On the recursive sequence 𝛼𝜓𝑚+𝛽𝜓𝑚−1 𝜒𝜓𝑚+𝛽𝜓𝑚−1 ,” Math. Sci. Res.Hot-Line, 2(5), 1-16 (1998).
  • Kulenovic M.R.S., Ladas G., ”Dynamics of second order rational difference equations” Chapman & Hall/CRC, Boca Raton, FL, 2002. With open problems and conjectures.
  • Rahaman M., Mondal S.P., Algehyne E.A., Biswas A., Alam S, ”A method for solving linear difference equation in Gaussian fuzzy environments,” Granular Computing, 7(1), 63-76, (2021).
  • Simsek D., Abdullayev F.G., ”On the Recursive Sequence 𝜓𝑚+1 = 𝜓𝑚−(𝑘+1) 1+𝜓𝑚𝜓𝑚−1...𝜓𝑚−𝑘 ,” Journal of Mathematical Sciences, 234(1), 73-81 (2018) .
  • Sims¸ek D., Ogul B., Cinar C., ”Solution of the rational difference equation 𝜓𝑚+1 = 𝜓𝑚−17 1+𝜓𝑚−5𝜓𝑚−11 ,” Filomat, 33(5), 1353-1359, (2019).
  • B. Ogul, D. Simsek, T.F. Ibrahim / MANAS Journal of Engineering, 11 (1) (2023) 165
  • Stevic S., ”A note on periodic character of a higher order difference equation,” Rostock. Math. Kolloq., 61 2-30, (2006).
  • Stevic S., Iricanin B., Kosmala W., Smarda Z., ”On a nonlinear second-order difference equation,” Journal of Inequalites and Applications, 2022(1), (2022).
  • Soykan Y., Tas¸demir E., G¨ocen M, ”Binomial transform of the generalized third-order Jacobsthal sequence, Asian- European Journal of Mathematics, (2022).
  • Tas¸demir E., ”On the global asymptotic stability of a system of difference equations with quadratic terms,” Journal of Applied Mathematics and Computing, 1-15, (2020).
  • Yalcinkaya ˙I., C¸ alıs¸kan V., Tollu D.T., ”On a nonlinear fuzzy difference equation,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 68-78, (2022).

The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order

Year 2023, , 158 - 165, 01.07.2023
https://doi.org/10.51354/mjen.1233063

Abstract

We explore the dynamics of adhering to rational difference formula
$$ \psi_{m+1}=\frac{\psi_{m-20}}{\pm 1 \pm \psi_{m-2}\psi_{m-5}\psi_{m-8}\psi_{m-11}\psi_{m-14}\psi_{m-17}\psi_{m-20}}, \quad m \in \mathbb{N}_{0} $$
where the initials are arbitrary nonzero real numbers. Specifically, we examine global asymptotically stability. Additionally, we provide examples and solutions graphs of some special cases.

References

  • Abdelrahman M.A.E, Moaaz O., ”On the New Class of The Nonlinear Rational Difference Equations,” Electronic Journal of Mathematical Analysis and Applications, 6 (1), 117-125, (2018).
  • Ahmed A.E.S., Iriˇcanin B., KosmalaW., Stevi´c S., Smarda Z, ”Note on constructing a family of solvable sine-type difference equations,” Advances in Difference Equations, 2021(1), 1-11, (2021).
  • Agarwal R.P., ”Difference Equations and Inequalities,” Marcel Dekker, New York, 1992, 2nd edition, 2000.
  • Agarwal R.P.and Elsayed E.M., ”Periodicity and stability of solutions of higher order rational difference equation,” Advanced Studies in Contemporary Mathematics, 17(2), 181-201, (2008).
  • Agarwal R.P.and Elsayed E.M., ”On the solution of fourthorder rational recursive sequence,” Advanced Studies in Contemporary Mathematics, 20(4), 525-545 (2010).
  • Aloqeili M., ”Dynamics of a rational difference equation,” Applied Mathematics and Computation, 176(2), 768-774, (2006).
  • Amleh A.M., Grove G.A., Ladas G., Georgiou, D.A., ”On the recursive sequence 𝑦𝑚+1 = 𝛼 + 𝑦𝑚−1 𝑦𝑚 ,” J. of Math. Anal. App. 233, 790-798 (1999).
  • Belhannache F., Touafek N., Abo-Zeid, R., ”On a higherorder rational difference equation,” J. Appl. Math. Informatics, 34(5-6), 369-382, (2016).
  • Bilgin A., Kulenovi´c M.R.S., ”Global asymptotic stability for discrete single species population models,” Discrete Dynamics in Nature and Society, 2017. Article ID 5963594, 15.
  • Cinar C., ”On the positive solutions of the difference equation 𝜓𝑚+1 = 𝑎𝜓𝑚−1 1+𝑏𝜓𝑚𝜓𝑚−1 ,” J. of App. Math. Comp., 156(2), 587-590 (2004).
  • Cinar C., Mansour T., Yalcinkaya I., On the difference equation of higher order,” Utilitas Mathematica, 92, 161- 166 (2013).
  • Das S.E., Bayram M., ”On a system of rational difference equations,” World Applied Sciences Journal, 10(11), 1306-1312 (2010).
  • DeVault R., Ladas G., Schultz S.W., ”On the recursive sequence 𝜓𝑚+1 = 𝐴 𝜓𝑚 + 1 𝜓𝑚−2 ,” Proc.Amer. Math. Soc.126 (11) 3257-3261 (1998).
  • Elsayed E.M., ”On The Difference Equation 𝜓𝑚+1 = 𝜓𝑚−5 −1+𝜓𝑚−2𝜓𝑚−5 ,” Inter. J. Contemp. Math. Sci., 3 (33) 1657-1664, (2008).
  • Gibbons C.H., Kulenovic M.R.S., Ladas G., ”On the recursive sequence 𝛼+𝛽𝜓𝑚−1 𝜒+𝛽𝜓𝑚−1 ,” Math. Sci. Res. Hot-Line, 4(2), 1-11 (2000).
  • Ibrahim T.F., Khan A.Q., Ogul, B., S¸ims¸ek, D., ”Closed- Form Solution of a Rational Difference Equation,” Mathematical Problems in Engineering, 2021.
  • Ibrahim T.F., Khan A.Q., Ibrahim, A., ”Qualitative behavior of a nonlinear generalized recursive sequence with delay,” Mathematical Problems in Engineering, (2021).
  • Khan A.Q., El-Metwally H., ”Global dynamics, boundedness, and semicycle analysis of a difference equation,” Discrete Dynamics in Nature and Society, (2021).
  • Kocic V.L., Ladas G., ”Global behavior of nonlinear difference equations of higher order with applications,” volume 256 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993.
  • Kulenovic M.R.S., Ladas G., SizerW.S., ”On the recursive sequence 𝛼𝜓𝑚+𝛽𝜓𝑚−1 𝜒𝜓𝑚+𝛽𝜓𝑚−1 ,” Math. Sci. Res.Hot-Line, 2(5), 1-16 (1998).
  • Kulenovic M.R.S., Ladas G., ”Dynamics of second order rational difference equations” Chapman & Hall/CRC, Boca Raton, FL, 2002. With open problems and conjectures.
  • Rahaman M., Mondal S.P., Algehyne E.A., Biswas A., Alam S, ”A method for solving linear difference equation in Gaussian fuzzy environments,” Granular Computing, 7(1), 63-76, (2021).
  • Simsek D., Abdullayev F.G., ”On the Recursive Sequence 𝜓𝑚+1 = 𝜓𝑚−(𝑘+1) 1+𝜓𝑚𝜓𝑚−1...𝜓𝑚−𝑘 ,” Journal of Mathematical Sciences, 234(1), 73-81 (2018) .
  • Sims¸ek D., Ogul B., Cinar C., ”Solution of the rational difference equation 𝜓𝑚+1 = 𝜓𝑚−17 1+𝜓𝑚−5𝜓𝑚−11 ,” Filomat, 33(5), 1353-1359, (2019).
  • B. Ogul, D. Simsek, T.F. Ibrahim / MANAS Journal of Engineering, 11 (1) (2023) 165
  • Stevic S., ”A note on periodic character of a higher order difference equation,” Rostock. Math. Kolloq., 61 2-30, (2006).
  • Stevic S., Iricanin B., Kosmala W., Smarda Z., ”On a nonlinear second-order difference equation,” Journal of Inequalites and Applications, 2022(1), (2022).
  • Soykan Y., Tas¸demir E., G¨ocen M, ”Binomial transform of the generalized third-order Jacobsthal sequence, Asian- European Journal of Mathematics, (2022).
  • Tas¸demir E., ”On the global asymptotic stability of a system of difference equations with quadratic terms,” Journal of Applied Mathematics and Computing, 1-15, (2020).
  • Yalcinkaya ˙I., C¸ alıs¸kan V., Tollu D.T., ”On a nonlinear fuzzy difference equation,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 68-78, (2022).
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Burak Oğul 0000-0002-3264-4340

Dağıstan Şimşek 0000-0003-3003-807X

Ibrahim Tarek Fawzi Abdelhamid 0000-0002-6895-3268

Early Pub Date June 23, 2023
Publication Date July 1, 2023
Published in Issue Year 2023

Cite

APA Oğul, B., Şimşek, D., & Tarek Fawzi Abdelhamid, I. (2023). The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MANAS Journal of Engineering, 11(1), 158-165. https://doi.org/10.51354/mjen.1233063
AMA Oğul B, Şimşek D, Tarek Fawzi Abdelhamid I. The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MJEN. July 2023;11(1):158-165. doi:10.51354/mjen.1233063
Chicago Oğul, Burak, Dağıstan Şimşek, and Ibrahim Tarek Fawzi Abdelhamid. “The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order”. MANAS Journal of Engineering 11, no. 1 (July 2023): 158-65. https://doi.org/10.51354/mjen.1233063.
EndNote Oğul B, Şimşek D, Tarek Fawzi Abdelhamid I (July 1, 2023) The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MANAS Journal of Engineering 11 1 158–165.
IEEE B. Oğul, D. Şimşek, and I. Tarek Fawzi Abdelhamid, “The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order”, MJEN, vol. 11, no. 1, pp. 158–165, 2023, doi: 10.51354/mjen.1233063.
ISNAD Oğul, Burak et al. “The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order”. MANAS Journal of Engineering 11/1 (July 2023), 158-165. https://doi.org/10.51354/mjen.1233063.
JAMA Oğul B, Şimşek D, Tarek Fawzi Abdelhamid I. The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MJEN. 2023;11:158–165.
MLA Oğul, Burak et al. “The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order”. MANAS Journal of Engineering, vol. 11, no. 1, 2023, pp. 158-65, doi:10.51354/mjen.1233063.
Vancouver Oğul B, Şimşek D, Tarek Fawzi Abdelhamid I. The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MJEN. 2023;11(1):158-65.

Manas Journal of Engineering 

16155