Year 2023,
, 158 - 165, 01.07.2023
Burak Oğul
,
Dağıstan Şimşek
,
Ibrahim Tarek Fawzi Abdelhamid
References
- Abdelrahman M.A.E, Moaaz O., ”On the New Class of The Nonlinear Rational Difference Equations,” Electronic Journal of Mathematical Analysis and Applications, 6 (1), 117-125, (2018).
- Ahmed A.E.S., Iriˇcanin B., KosmalaW., Stevi´c S., Smarda Z, ”Note on constructing a family of solvable sine-type difference equations,” Advances in Difference Equations, 2021(1), 1-11, (2021).
- Agarwal R.P., ”Difference Equations and Inequalities,” Marcel Dekker, New York, 1992, 2nd edition, 2000.
- Agarwal R.P.and Elsayed E.M., ”Periodicity and stability of solutions of higher order rational difference equation,” Advanced Studies in Contemporary Mathematics, 17(2), 181-201, (2008).
- Agarwal R.P.and Elsayed E.M., ”On the solution of fourthorder rational recursive sequence,” Advanced Studies in Contemporary Mathematics, 20(4), 525-545 (2010).
- Aloqeili M., ”Dynamics of a rational difference equation,” Applied Mathematics and Computation, 176(2), 768-774, (2006).
- Amleh A.M., Grove G.A., Ladas G., Georgiou, D.A., ”On the recursive sequence 𝑦𝑚+1 = 𝛼 + 𝑦𝑚−1 𝑦𝑚 ,” J. of Math. Anal. App. 233, 790-798 (1999).
- Belhannache F., Touafek N., Abo-Zeid, R., ”On a higherorder rational difference equation,” J. Appl. Math. Informatics, 34(5-6), 369-382, (2016).
- Bilgin A., Kulenovi´c M.R.S., ”Global asymptotic stability for discrete single species population models,” Discrete Dynamics in Nature and Society, 2017. Article ID 5963594, 15.
- Cinar C., ”On the positive solutions of the difference equation 𝜓𝑚+1 = 𝑎𝜓𝑚−1 1+𝑏𝜓𝑚𝜓𝑚−1 ,” J. of App. Math. Comp., 156(2), 587-590 (2004).
- Cinar C., Mansour T., Yalcinkaya I., On the difference equation of higher order,” Utilitas Mathematica, 92, 161- 166 (2013).
- Das S.E., Bayram M., ”On a system of rational difference equations,” World Applied Sciences Journal, 10(11), 1306-1312 (2010).
- DeVault R., Ladas G., Schultz S.W., ”On the recursive sequence 𝜓𝑚+1 = 𝐴 𝜓𝑚 + 1 𝜓𝑚−2 ,” Proc.Amer. Math. Soc.126 (11) 3257-3261 (1998).
- Elsayed E.M., ”On The Difference Equation 𝜓𝑚+1 = 𝜓𝑚−5 −1+𝜓𝑚−2𝜓𝑚−5 ,” Inter. J. Contemp. Math. Sci., 3 (33) 1657-1664, (2008).
- Gibbons C.H., Kulenovic M.R.S., Ladas G., ”On the recursive sequence 𝛼+𝛽𝜓𝑚−1 𝜒+𝛽𝜓𝑚−1 ,” Math. Sci. Res. Hot-Line, 4(2), 1-11 (2000).
- Ibrahim T.F., Khan A.Q., Ogul, B., S¸ims¸ek, D., ”Closed- Form Solution of a Rational Difference Equation,” Mathematical Problems in Engineering, 2021.
- Ibrahim T.F., Khan A.Q., Ibrahim, A., ”Qualitative behavior of a nonlinear generalized recursive sequence with delay,” Mathematical Problems in Engineering, (2021).
- Khan A.Q., El-Metwally H., ”Global dynamics, boundedness, and semicycle analysis of a difference equation,” Discrete Dynamics in Nature and Society, (2021).
- Kocic V.L., Ladas G., ”Global behavior of nonlinear difference equations of higher order with applications,” volume 256 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993.
- Kulenovic M.R.S., Ladas G., SizerW.S., ”On the recursive sequence 𝛼𝜓𝑚+𝛽𝜓𝑚−1 𝜒𝜓𝑚+𝛽𝜓𝑚−1 ,” Math. Sci. Res.Hot-Line, 2(5), 1-16 (1998).
- Kulenovic M.R.S., Ladas G., ”Dynamics of second order rational difference equations” Chapman & Hall/CRC, Boca Raton, FL, 2002. With open problems and conjectures.
- Rahaman M., Mondal S.P., Algehyne E.A., Biswas A., Alam S, ”A method for solving linear difference equation in Gaussian fuzzy environments,” Granular Computing, 7(1), 63-76, (2021).
- Simsek D., Abdullayev F.G., ”On the Recursive Sequence 𝜓𝑚+1 = 𝜓𝑚−(𝑘+1) 1+𝜓𝑚𝜓𝑚−1...𝜓𝑚−𝑘 ,” Journal of Mathematical Sciences, 234(1), 73-81 (2018) .
- Sims¸ek D., Ogul B., Cinar C., ”Solution of the rational difference equation 𝜓𝑚+1 = 𝜓𝑚−17 1+𝜓𝑚−5𝜓𝑚−11 ,” Filomat, 33(5), 1353-1359, (2019).
- B. Ogul, D. Simsek, T.F. Ibrahim / MANAS Journal of Engineering, 11 (1) (2023) 165
- Stevic S., ”A note on periodic character of a higher order difference equation,” Rostock. Math. Kolloq., 61 2-30, (2006).
- Stevic S., Iricanin B., Kosmala W., Smarda Z., ”On a nonlinear second-order difference equation,” Journal of Inequalites and Applications, 2022(1), (2022).
- Soykan Y., Tas¸demir E., G¨ocen M, ”Binomial transform of the generalized third-order Jacobsthal sequence, Asian- European Journal of Mathematics, (2022).
- Tas¸demir E., ”On the global asymptotic stability of a system of difference equations with quadratic terms,” Journal of Applied Mathematics and Computing, 1-15, (2020).
- Yalcinkaya ˙I., C¸ alıs¸kan V., Tollu D.T., ”On a nonlinear fuzzy difference equation,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 68-78, (2022).
The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order
Year 2023,
, 158 - 165, 01.07.2023
Burak Oğul
,
Dağıstan Şimşek
,
Ibrahim Tarek Fawzi Abdelhamid
Abstract
We explore the dynamics of adhering to rational difference formula
$$ \psi_{m+1}=\frac{\psi_{m-20}}{\pm 1 \pm \psi_{m-2}\psi_{m-5}\psi_{m-8}\psi_{m-11}\psi_{m-14}\psi_{m-17}\psi_{m-20}}, \quad m \in \mathbb{N}_{0} $$
where the initials are arbitrary nonzero real numbers. Specifically, we examine global asymptotically stability. Additionally, we provide examples and solutions graphs of some special cases.
References
- Abdelrahman M.A.E, Moaaz O., ”On the New Class of The Nonlinear Rational Difference Equations,” Electronic Journal of Mathematical Analysis and Applications, 6 (1), 117-125, (2018).
- Ahmed A.E.S., Iriˇcanin B., KosmalaW., Stevi´c S., Smarda Z, ”Note on constructing a family of solvable sine-type difference equations,” Advances in Difference Equations, 2021(1), 1-11, (2021).
- Agarwal R.P., ”Difference Equations and Inequalities,” Marcel Dekker, New York, 1992, 2nd edition, 2000.
- Agarwal R.P.and Elsayed E.M., ”Periodicity and stability of solutions of higher order rational difference equation,” Advanced Studies in Contemporary Mathematics, 17(2), 181-201, (2008).
- Agarwal R.P.and Elsayed E.M., ”On the solution of fourthorder rational recursive sequence,” Advanced Studies in Contemporary Mathematics, 20(4), 525-545 (2010).
- Aloqeili M., ”Dynamics of a rational difference equation,” Applied Mathematics and Computation, 176(2), 768-774, (2006).
- Amleh A.M., Grove G.A., Ladas G., Georgiou, D.A., ”On the recursive sequence 𝑦𝑚+1 = 𝛼 + 𝑦𝑚−1 𝑦𝑚 ,” J. of Math. Anal. App. 233, 790-798 (1999).
- Belhannache F., Touafek N., Abo-Zeid, R., ”On a higherorder rational difference equation,” J. Appl. Math. Informatics, 34(5-6), 369-382, (2016).
- Bilgin A., Kulenovi´c M.R.S., ”Global asymptotic stability for discrete single species population models,” Discrete Dynamics in Nature and Society, 2017. Article ID 5963594, 15.
- Cinar C., ”On the positive solutions of the difference equation 𝜓𝑚+1 = 𝑎𝜓𝑚−1 1+𝑏𝜓𝑚𝜓𝑚−1 ,” J. of App. Math. Comp., 156(2), 587-590 (2004).
- Cinar C., Mansour T., Yalcinkaya I., On the difference equation of higher order,” Utilitas Mathematica, 92, 161- 166 (2013).
- Das S.E., Bayram M., ”On a system of rational difference equations,” World Applied Sciences Journal, 10(11), 1306-1312 (2010).
- DeVault R., Ladas G., Schultz S.W., ”On the recursive sequence 𝜓𝑚+1 = 𝐴 𝜓𝑚 + 1 𝜓𝑚−2 ,” Proc.Amer. Math. Soc.126 (11) 3257-3261 (1998).
- Elsayed E.M., ”On The Difference Equation 𝜓𝑚+1 = 𝜓𝑚−5 −1+𝜓𝑚−2𝜓𝑚−5 ,” Inter. J. Contemp. Math. Sci., 3 (33) 1657-1664, (2008).
- Gibbons C.H., Kulenovic M.R.S., Ladas G., ”On the recursive sequence 𝛼+𝛽𝜓𝑚−1 𝜒+𝛽𝜓𝑚−1 ,” Math. Sci. Res. Hot-Line, 4(2), 1-11 (2000).
- Ibrahim T.F., Khan A.Q., Ogul, B., S¸ims¸ek, D., ”Closed- Form Solution of a Rational Difference Equation,” Mathematical Problems in Engineering, 2021.
- Ibrahim T.F., Khan A.Q., Ibrahim, A., ”Qualitative behavior of a nonlinear generalized recursive sequence with delay,” Mathematical Problems in Engineering, (2021).
- Khan A.Q., El-Metwally H., ”Global dynamics, boundedness, and semicycle analysis of a difference equation,” Discrete Dynamics in Nature and Society, (2021).
- Kocic V.L., Ladas G., ”Global behavior of nonlinear difference equations of higher order with applications,” volume 256 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993.
- Kulenovic M.R.S., Ladas G., SizerW.S., ”On the recursive sequence 𝛼𝜓𝑚+𝛽𝜓𝑚−1 𝜒𝜓𝑚+𝛽𝜓𝑚−1 ,” Math. Sci. Res.Hot-Line, 2(5), 1-16 (1998).
- Kulenovic M.R.S., Ladas G., ”Dynamics of second order rational difference equations” Chapman & Hall/CRC, Boca Raton, FL, 2002. With open problems and conjectures.
- Rahaman M., Mondal S.P., Algehyne E.A., Biswas A., Alam S, ”A method for solving linear difference equation in Gaussian fuzzy environments,” Granular Computing, 7(1), 63-76, (2021).
- Simsek D., Abdullayev F.G., ”On the Recursive Sequence 𝜓𝑚+1 = 𝜓𝑚−(𝑘+1) 1+𝜓𝑚𝜓𝑚−1...𝜓𝑚−𝑘 ,” Journal of Mathematical Sciences, 234(1), 73-81 (2018) .
- Sims¸ek D., Ogul B., Cinar C., ”Solution of the rational difference equation 𝜓𝑚+1 = 𝜓𝑚−17 1+𝜓𝑚−5𝜓𝑚−11 ,” Filomat, 33(5), 1353-1359, (2019).
- B. Ogul, D. Simsek, T.F. Ibrahim / MANAS Journal of Engineering, 11 (1) (2023) 165
- Stevic S., ”A note on periodic character of a higher order difference equation,” Rostock. Math. Kolloq., 61 2-30, (2006).
- Stevic S., Iricanin B., Kosmala W., Smarda Z., ”On a nonlinear second-order difference equation,” Journal of Inequalites and Applications, 2022(1), (2022).
- Soykan Y., Tas¸demir E., G¨ocen M, ”Binomial transform of the generalized third-order Jacobsthal sequence, Asian- European Journal of Mathematics, (2022).
- Tas¸demir E., ”On the global asymptotic stability of a system of difference equations with quadratic terms,” Journal of Applied Mathematics and Computing, 1-15, (2020).
- Yalcinkaya ˙I., C¸ alıs¸kan V., Tollu D.T., ”On a nonlinear fuzzy difference equation,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 68-78, (2022).