Research Article
BibTex RIS Cite

Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform

Year 2025, Volume: 13 Issue: 1, 18 - 22, 27.06.2025
https://doi.org/10.51354/mjen.1543383

Abstract

The generalized pathway fractional integral formulas for the newly extended multiindex Mittag-Leffler function defined by using two Fox-Wright functions as its kernel is studied. Moreover, the SUM integral transform of the composition formula for the pathway fractional integral and extended multi-index Mittag-Leffler function is also presented.

References

  • [1] Singh A., Kumar S., Vigo-Angular, J., On New Approximations of Caputo-Prabhakar Fractional Derivative and their Application to Reaction-diffusion Problems with Variable Coefficients, Mathematical Method in the Applied Sciences 47, (2023), 268-296.
  • [2] Yadav P., Johan S., Shah K., Peter O.M., Fractional-order Modeling and Analysis of Debates Mellitus: Utilizing the Atangana-Baleanu Caputo (ABC) operator, Alexandria Engineering Journal, 81, (2023), 200-209.
  • [3] Kaur, D., A details study on fractional calculus, In: Conference Proceeding of International Multidisplinary Conference, pp. 54-59, 2022.
  • [4] Turkyilmazoglu, M., Altanji, M., ”Fractional Models of Falling Object with Linear and Quadratic Frictional Forces Considering Caputo Derivatives,” Chaos, Solitons and Fractals, 166:112980, 2023.
  • [5] Nair, S.S., Pathway Fractional Integration Operator, Fractional Calculus and Applied Analysis, 12, (2009), 237-259.
  • [6] Nair, D.H., On a class of Fractional Integral Operator through Pathway Ideas, Proceeding of 12𝑡ℎ Annual Conference Society for Special Functions and Their Applications, 12, pp. 91-109, 2013.
  • [7] Pal, A., Jana, R.K., Shukla, A.K., Generalized Integral Transform and Fractional Calculus involving Extended 𝑞𝑅𝑞 (𝛼, 𝛽; 𝑧) Function, Journal of the Indian Mathematical Society, 89, (2022), 100-116.
  • [8] Kaurangini, M.L., Abubakar, U.M., Ata, E., New Extended Multi-index Mittag-Leffler Function and Application of Double Mellin Integral Transform and Riemann-Liouville Fractional Operators, Submitted for Publication, 2024.
  • [9] Kaurangini, M.L., Chaudhary, M.P., Abubakar, U.M., Kiymaz, I.O., Ata, E., On Some Special Functions with Bi-Fox-Wright Function Kernel,” Submitted for Publication 2024.
  • [10] Chaudhary, M.P., M.L. Kaurangini, M.L., Kiymaz, I.O., Abubakar, U.M., Ata, E., Fractional Integrations for the New Generalized Hypergeometric Functions, Journal of Ramanujan Society of Mathematical Science, 10, (2023), 77-100.
  • [11] Ghanim, F., Al-Janaby, H.F., Al-Momani, M., A New Euler-Beta Function Model with Statistical Implementation Related to the Mittag-Leffler-Kumar Function, Kuwait Journal of Science, 2023, (2023), 1-27.
  • [12] Pohlen, T., The Hadamard Product and Universal Power Series, PhD Dissertation, Unviversitat Trier, Trier, Germany, 2009.
  • [13] Hasan, S.Q., Abubakar, U.M., Kaurangini, M.L., The New Integral Transform ”SUM Transform” and its Properties, Palestine Journal Mathematics, 12(2023), 30-45.
  • [14] Hassan,S. Q., Mansour, A.I., Abubakar,U.M., Applications of the SUM Integral Transform in Science and Technolog, Wasit Journal for Pure sciences, 2, (2023), 29-40.
  • [15] Rahman, G., Nisar, K.S., Choi, J., Mubeen, S., Arshad, M., Pathway fractional Integral Formulas involving Extended Mittag-Leffler Functions in the Kernel, Kyungpook Mathematical Journal, 59, (2019), 125-134.
  • [16] Agarwal, P., Akhtar, H.M., Khan, A., Momani, S., Abdel- Aty, M., Pathway Fractional Formula involving Extended Mittag-Leffler Function in the Kernel of Generalized Elzaki Transform, Progress in Fractional Differential and Applications, 9, (2023), 25-32.

Year 2025, Volume: 13 Issue: 1, 18 - 22, 27.06.2025
https://doi.org/10.51354/mjen.1543383

Abstract

References

  • [1] Singh A., Kumar S., Vigo-Angular, J., On New Approximations of Caputo-Prabhakar Fractional Derivative and their Application to Reaction-diffusion Problems with Variable Coefficients, Mathematical Method in the Applied Sciences 47, (2023), 268-296.
  • [2] Yadav P., Johan S., Shah K., Peter O.M., Fractional-order Modeling and Analysis of Debates Mellitus: Utilizing the Atangana-Baleanu Caputo (ABC) operator, Alexandria Engineering Journal, 81, (2023), 200-209.
  • [3] Kaur, D., A details study on fractional calculus, In: Conference Proceeding of International Multidisplinary Conference, pp. 54-59, 2022.
  • [4] Turkyilmazoglu, M., Altanji, M., ”Fractional Models of Falling Object with Linear and Quadratic Frictional Forces Considering Caputo Derivatives,” Chaos, Solitons and Fractals, 166:112980, 2023.
  • [5] Nair, S.S., Pathway Fractional Integration Operator, Fractional Calculus and Applied Analysis, 12, (2009), 237-259.
  • [6] Nair, D.H., On a class of Fractional Integral Operator through Pathway Ideas, Proceeding of 12𝑡ℎ Annual Conference Society for Special Functions and Their Applications, 12, pp. 91-109, 2013.
  • [7] Pal, A., Jana, R.K., Shukla, A.K., Generalized Integral Transform and Fractional Calculus involving Extended 𝑞𝑅𝑞 (𝛼, 𝛽; 𝑧) Function, Journal of the Indian Mathematical Society, 89, (2022), 100-116.
  • [8] Kaurangini, M.L., Abubakar, U.M., Ata, E., New Extended Multi-index Mittag-Leffler Function and Application of Double Mellin Integral Transform and Riemann-Liouville Fractional Operators, Submitted for Publication, 2024.
  • [9] Kaurangini, M.L., Chaudhary, M.P., Abubakar, U.M., Kiymaz, I.O., Ata, E., On Some Special Functions with Bi-Fox-Wright Function Kernel,” Submitted for Publication 2024.
  • [10] Chaudhary, M.P., M.L. Kaurangini, M.L., Kiymaz, I.O., Abubakar, U.M., Ata, E., Fractional Integrations for the New Generalized Hypergeometric Functions, Journal of Ramanujan Society of Mathematical Science, 10, (2023), 77-100.
  • [11] Ghanim, F., Al-Janaby, H.F., Al-Momani, M., A New Euler-Beta Function Model with Statistical Implementation Related to the Mittag-Leffler-Kumar Function, Kuwait Journal of Science, 2023, (2023), 1-27.
  • [12] Pohlen, T., The Hadamard Product and Universal Power Series, PhD Dissertation, Unviversitat Trier, Trier, Germany, 2009.
  • [13] Hasan, S.Q., Abubakar, U.M., Kaurangini, M.L., The New Integral Transform ”SUM Transform” and its Properties, Palestine Journal Mathematics, 12(2023), 30-45.
  • [14] Hassan,S. Q., Mansour, A.I., Abubakar,U.M., Applications of the SUM Integral Transform in Science and Technolog, Wasit Journal for Pure sciences, 2, (2023), 29-40.
  • [15] Rahman, G., Nisar, K.S., Choi, J., Mubeen, S., Arshad, M., Pathway fractional Integral Formulas involving Extended Mittag-Leffler Functions in the Kernel, Kyungpook Mathematical Journal, 59, (2019), 125-134.
  • [16] Agarwal, P., Akhtar, H.M., Khan, A., Momani, S., Abdel- Aty, M., Pathway Fractional Formula involving Extended Mittag-Leffler Function in the Kernel of Generalized Elzaki Transform, Progress in Fractional Differential and Applications, 9, (2023), 25-32.
There are 16 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Muhammad Kaurangini 0000-0001-9144-9433

Umar Muhammad Abubakar 0000-0003-3935-4829

Enes Ata 0000-0001-6893-8693

Submission Date September 4, 2024
Acceptance Date February 26, 2025
Publication Date June 27, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Kaurangini, M., Abubakar, U. M., & Ata, E. (2025). Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform. MANAS Journal of Engineering, 13(1), 18-22. https://doi.org/10.51354/mjen.1543383
AMA Kaurangini M, Abubakar UM, Ata E. Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform. MJEN. June 2025;13(1):18-22. doi:10.51354/mjen.1543383
Chicago Kaurangini, Muhammad, Umar Muhammad Abubakar, and Enes Ata. “Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform”. MANAS Journal of Engineering 13, no. 1 (June 2025): 18-22. https://doi.org/10.51354/mjen.1543383.
EndNote Kaurangini M, Abubakar UM, Ata E (June 1, 2025) Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform. MANAS Journal of Engineering 13 1 18–22.
IEEE M. Kaurangini, U. M. Abubakar, and E. Ata, “Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform”, MJEN, vol. 13, no. 1, pp. 18–22, 2025, doi: 10.51354/mjen.1543383.
ISNAD Kaurangini, Muhammad et al. “Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform”. MANAS Journal of Engineering 13/1 (June2025), 18-22. https://doi.org/10.51354/mjen.1543383.
JAMA Kaurangini M, Abubakar UM, Ata E. Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform. MJEN. 2025;13:18–22.
MLA Kaurangini, Muhammad et al. “Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform”. MANAS Journal of Engineering, vol. 13, no. 1, 2025, pp. 18-22, doi:10.51354/mjen.1543383.
Vancouver Kaurangini M, Abubakar UM, Ata E. Generalized Pathway Fractional Integral Formulas Involving Extended Multi-Index Mittag-Leffler Function in Kernel of SUM Transform. MJEN. 2025;13(1):18-22.

Manas Journal of Engineering 

16155