BibTex RIS Cite

Pointwise Bernstein-walsh-type Inequalities In Regions With Piecewise Dini-smooth Boundary

Year 2017, Volume: 5 Issue: 3, 35 - 47, 01.12.2017

Abstract

In this work, we investigate the order of growth of the modulus of an arbitrary algebraic polynomials in the weighted Bergman space, where the contour and the weight functions have some singularities. In particular, we obtain pointwise Berstein-Walsh -type estimation for algebraic polynomials in the unbounded regions with piecewise Dini-smooth boundary having exterior zero angles

References

  • Abdullayev F.G., Andrievskii V.V., On the orthogonal polynomials in the domains with K -quasiconformal boundary. Izv. Akad. Nauk Azerb. SSR., Ser. FTM, 1, 3-7 (1983) (in Russian)
  • Abdullayev F.G., Dissertation (Ph.D.), Donetsk (1986).
  • Abdullayev F.G., On the orthogonal polynomials with unique weight. Izv. AS Azerb. SSR, Ser. FTM, 4, 7-10 (1986).
  • Abdullayev F.G., On the some properties of the orthogonal polynomials over the region of the complex plane (Part III), Ukr.Math.J., 53 (12), 1934-1948 (2001).
  • Abdullayev F.G. , On the interference of the weight boundary contour for orthogonal poly- nomials over the region, J. of Comp. Anal. and Appl., 6 (1), 31-42, (2004).
  • Abdullayev F.G. , Özkartepe P., An analogue of the Bernstein-Walsh lemma in Jordan regions of the complex plane, Journal Ineq. and Appl., 2013:570, 1-7, (2013).
  • Abdullayev F. G., Gün C.D., On the behavior of the algebraic polynomials in regions with piecewise smooth boundary without cusps, Ann.Polon.Math., 111, 39-58, (2014).
  • Abdullayev, F. G., Özkartepe N.P., On the Behavior of the Algebraic Polynomial in Un- bounded Regions with Piecewise Dini-Smooth Boundary, Ukr. Math. J., 66 (5), 579-597, (2014).
  • Abdullayev, F. G., Özkartepe N.P., Uniform and pointwise Bernstein-Walsh-type inequalities on a quasidisk in the complex plane, Bull. Belg. Math. Soc., 23 (2), 285–310, (2016).
  • Abdullayev F.G. , Özkartepe P., On the growch of algebraic polynomials in the whole complex plane, J. Korean Math. Soc. 52 (4), 699–725, (2015).
  • Abdullayev F.G., ÖzkartepeP., Uniform and pointwise polynomial inequalities in regions with cusps in the weighted Lebesgue space , Jaen Journal on Approximation, 7 (2), 231- 261, (2015).
  • Abdullayev F.G. , Tunç T., Uniform and pointwise polynomial inequalities in regions with asymptotically conformal curve on weighted Bergman space, Lobachevcki Journal of Mathe-matics, 38 (2), 193–205, (2017).
  • Abdullayev F.G., Tunç T., Abdullayev G.A., Polynomial inequalities in quasidisks on weighted Bergman space, Ukranian Mathematical Journal, 2017 (accepted)
  • Ahlfors L., Lectures on Quasiconformal Mappings. Princeton, NJ: Van Nostrand, (1966).
  • Andrievskii V.V., Belyi V.I., Dzyadyk V.K., Conformal invariants in constructive theory of functions of complex plane. Atlanta:World Federation Publ.Com. (1995).
  • Andrievskii V.V., Blatt H.P., Discrepancy of Signed Measures and Polynomial Approxima-tion, Springer Verlag New York Inc., (2010).
  • Bernstein S.N., Sur l’ordre de la meilleure approximation des fonctions continues par les polynomes de degre donne, Mem. Cl.Sci. Acad.Roy. Belgique, 4 (2), 1-103, (1912).
  • Dzjadyk V.K., Introduction to the Theory of Uniform Approximation of Functiıon by Poly-nomials, Nauka, Moskow, (1977). (in Russian)
  • Gaier D., On the convergence of the Bieberbach polynomials in regions with corners. Con- structive Approximation, 4, 289-305, (1988).
  • Faber. G., Über nach Polynomen fortschreitende Reihen, Sitzungsberichte der Bayrischen Akademie der Wissenschaften, 157-178, (1922).
  • Hille E., Szegö G., Tamarkin J.D., On some generalization of a theorem of A.Markoğ , Duke Math., 3, 729-739, (1937).
  • Lehto O., Virtanen K.I., Quasiconformal Mapping in the plane, Springer Verlag, Berlin (1973).
  • Mergelyan S.N., Some questions of Constructive Functions Theory, Proceedings of the Steklov Institute of Mathematics, Vol.XXXVII, 1-92, (1951) (in Russian)
  • Pommerenke Ch., Univalent Functions, Göttingen, Vandenhoeck & Ruprecht, 1975.
  • Rickman S., Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathe-matica., 395, 30, (1966).
  • Stylianopoulos N., Strong asymptotics for Bergman polynomials over domains with corners and applications, Const. Approx., 38, 59-100, (2013).
  • Tamrazov P.M., Smoothness and Polynomial Approx., Kiev, Naukova Dumka (1975) (in Russian)
  • Walsh J.L., Interpolation and Approximation by Rational Functions in the Complex Domain, AMS, (1960).

Parçalı Dini-Düzgün Eğri ile Sınırlı Bölgelerde noktasal Bernstein-Walsh Tipi Eşitsizlikler

Year 2017, Volume: 5 Issue: 3, 35 - 47, 01.12.2017

Abstract

Bu çalışmada, egri ve ağırlık fonksiyonlarının bazı tekilliklere sahip olduğu durumlarda, keyfi bir cebirsel polinomların modülünün büyüme hızını ağırlıklı Bergman uzayında inceliyoruz. Özellikle, parçalı Dini-düzgün dış sıfır açılara sahip olan sınırsız bölgelerde cebirsel polinomlar için noktasal Berstein-Walsh-tipi değerlendirmeler elde edilmiştir

References

  • Abdullayev F.G., Andrievskii V.V., On the orthogonal polynomials in the domains with K -quasiconformal boundary. Izv. Akad. Nauk Azerb. SSR., Ser. FTM, 1, 3-7 (1983) (in Russian)
  • Abdullayev F.G., Dissertation (Ph.D.), Donetsk (1986).
  • Abdullayev F.G., On the orthogonal polynomials with unique weight. Izv. AS Azerb. SSR, Ser. FTM, 4, 7-10 (1986).
  • Abdullayev F.G., On the some properties of the orthogonal polynomials over the region of the complex plane (Part III), Ukr.Math.J., 53 (12), 1934-1948 (2001).
  • Abdullayev F.G. , On the interference of the weight boundary contour for orthogonal poly- nomials over the region, J. of Comp. Anal. and Appl., 6 (1), 31-42, (2004).
  • Abdullayev F.G. , Özkartepe P., An analogue of the Bernstein-Walsh lemma in Jordan regions of the complex plane, Journal Ineq. and Appl., 2013:570, 1-7, (2013).
  • Abdullayev F. G., Gün C.D., On the behavior of the algebraic polynomials in regions with piecewise smooth boundary without cusps, Ann.Polon.Math., 111, 39-58, (2014).
  • Abdullayev, F. G., Özkartepe N.P., On the Behavior of the Algebraic Polynomial in Un- bounded Regions with Piecewise Dini-Smooth Boundary, Ukr. Math. J., 66 (5), 579-597, (2014).
  • Abdullayev, F. G., Özkartepe N.P., Uniform and pointwise Bernstein-Walsh-type inequalities on a quasidisk in the complex plane, Bull. Belg. Math. Soc., 23 (2), 285–310, (2016).
  • Abdullayev F.G. , Özkartepe P., On the growch of algebraic polynomials in the whole complex plane, J. Korean Math. Soc. 52 (4), 699–725, (2015).
  • Abdullayev F.G., ÖzkartepeP., Uniform and pointwise polynomial inequalities in regions with cusps in the weighted Lebesgue space , Jaen Journal on Approximation, 7 (2), 231- 261, (2015).
  • Abdullayev F.G. , Tunç T., Uniform and pointwise polynomial inequalities in regions with asymptotically conformal curve on weighted Bergman space, Lobachevcki Journal of Mathe-matics, 38 (2), 193–205, (2017).
  • Abdullayev F.G., Tunç T., Abdullayev G.A., Polynomial inequalities in quasidisks on weighted Bergman space, Ukranian Mathematical Journal, 2017 (accepted)
  • Ahlfors L., Lectures on Quasiconformal Mappings. Princeton, NJ: Van Nostrand, (1966).
  • Andrievskii V.V., Belyi V.I., Dzyadyk V.K., Conformal invariants in constructive theory of functions of complex plane. Atlanta:World Federation Publ.Com. (1995).
  • Andrievskii V.V., Blatt H.P., Discrepancy of Signed Measures and Polynomial Approxima-tion, Springer Verlag New York Inc., (2010).
  • Bernstein S.N., Sur l’ordre de la meilleure approximation des fonctions continues par les polynomes de degre donne, Mem. Cl.Sci. Acad.Roy. Belgique, 4 (2), 1-103, (1912).
  • Dzjadyk V.K., Introduction to the Theory of Uniform Approximation of Functiıon by Poly-nomials, Nauka, Moskow, (1977). (in Russian)
  • Gaier D., On the convergence of the Bieberbach polynomials in regions with corners. Con- structive Approximation, 4, 289-305, (1988).
  • Faber. G., Über nach Polynomen fortschreitende Reihen, Sitzungsberichte der Bayrischen Akademie der Wissenschaften, 157-178, (1922).
  • Hille E., Szegö G., Tamarkin J.D., On some generalization of a theorem of A.Markoğ , Duke Math., 3, 729-739, (1937).
  • Lehto O., Virtanen K.I., Quasiconformal Mapping in the plane, Springer Verlag, Berlin (1973).
  • Mergelyan S.N., Some questions of Constructive Functions Theory, Proceedings of the Steklov Institute of Mathematics, Vol.XXXVII, 1-92, (1951) (in Russian)
  • Pommerenke Ch., Univalent Functions, Göttingen, Vandenhoeck & Ruprecht, 1975.
  • Rickman S., Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathe-matica., 395, 30, (1966).
  • Stylianopoulos N., Strong asymptotics for Bergman polynomials over domains with corners and applications, Const. Approx., 38, 59-100, (2013).
  • Tamrazov P.M., Smoothness and Polynomial Approx., Kiev, Naukova Dumka (1975) (in Russian)
  • Walsh J.L., Interpolation and Approximation by Rational Functions in the Complex Domain, AMS, (1960).
There are 28 citations in total.

Details

Other ID JA23ZE79KC
Journal Section Research Article
Authors

P. Özkartepe This is me

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

APA Özkartepe, P. (2017). Pointwise Bernstein-walsh-type Inequalities In Regions With Piecewise Dini-smooth Boundary. MANAS Journal of Engineering, 5(3), 35-47.
AMA Özkartepe P. Pointwise Bernstein-walsh-type Inequalities In Regions With Piecewise Dini-smooth Boundary. MJEN. December 2017;5(3):35-47.
Chicago Özkartepe, P. “Pointwise Bernstein-Walsh-Type Inequalities In Regions With Piecewise Dini-Smooth Boundary”. MANAS Journal of Engineering 5, no. 3 (December 2017): 35-47.
EndNote Özkartepe P (December 1, 2017) Pointwise Bernstein-walsh-type Inequalities In Regions With Piecewise Dini-smooth Boundary. MANAS Journal of Engineering 5 3 35–47.
IEEE P. Özkartepe, “Pointwise Bernstein-walsh-type Inequalities In Regions With Piecewise Dini-smooth Boundary”, MJEN, vol. 5, no. 3, pp. 35–47, 2017.
ISNAD Özkartepe, P. “Pointwise Bernstein-Walsh-Type Inequalities In Regions With Piecewise Dini-Smooth Boundary”. MANAS Journal of Engineering 5/3 (December 2017), 35-47.
JAMA Özkartepe P. Pointwise Bernstein-walsh-type Inequalities In Regions With Piecewise Dini-smooth Boundary. MJEN. 2017;5:35–47.
MLA Özkartepe, P. “Pointwise Bernstein-Walsh-Type Inequalities In Regions With Piecewise Dini-Smooth Boundary”. MANAS Journal of Engineering, vol. 5, no. 3, 2017, pp. 35-47.
Vancouver Özkartepe P. Pointwise Bernstein-walsh-type Inequalities In Regions With Piecewise Dini-smooth Boundary. MJEN. 2017;5(3):35-47.

Manas Journal of Engineering 

16155