Research Article
BibTex RIS Cite
Year 2019, Volume: 7 Issue: 2, 157 - 165, 25.12.2019

Abstract

References

  • [1] Vladimirov V.S.,” Matematicheskie zadachi odnoskorostnoi toerii perenosa chastis”, Trudy MİAN,Т.61,(1961),130-158.
  • [2] Volterra V., Teoriya funksionalov,integrelnyh i integro- differensiyalnyh uravneniy.Moskva, Nauka, 1982..
  • [3] Tyn Myint-U, Lokenath, Partial Differential Equations for Scientists and Engineers, Prentice Hall, 1987.
  • [4] Tihonov A.I. and Samarskiy А.А., Uravneniye matematicheskoy fiziki. Мoskva, Nauka,1972.
  • [5] Sharma J.N., Kehar Singh, Partial Differential Equations For Engineers and Scientists, Alpha Science İnternational Ltd. 2000, UK.
  • [6] Aramanovich İ.G. and Levin V.İ., Uravneniye matematicheskoy fiziki. İzdatelstvo Nauka, 1969.
  • [7] Denemeyer R. Introduction to: Partial Differential Equations and Boundary Value Problems, McGraw-Hill Book Company, New York, 1968.
  • [8] Snedon I.N., Elements of Partial Differential Equations, dover Publications, INC.,New York ,2006.
  • [9] Chaglıyan M., Chelebi O., Kysmi Diferensiyel Denklemler, Uludag Üniversitesi Guchlendirme Vakfı,Yayın No:196,VİPASH A.SH.,Yayın No:72,2002.
  • [10] Koca K., Kysmi Diferensiyel Denklemler, Gunduz Egitim ve Yayıncılık, Ankara, 2001.
  • [11] Anar E., Kısmi Diferensiyel Denklemler, Palme Yayıncılık,Ankara,2005.
  • [12] Kerimbekov A., Abdyldaeva E., “On the Solvability of a Nonlinear Tracking Problem Under Boundary Control for the Elastic Oscillations Described by Fredholm Integro-Differential Equations”, System Modeling and Optimization Dergisi. 27th IFIP TC 7 Conference, CSMO 2015. Sophia Antipolis, France, June 29–July 3, 2015. Revised Selected Papers. Sprınger. 2017. 312-322 р

Generalized solution of boundary value problem with an inhomogeneous boundary condition

Year 2019, Volume: 7 Issue: 2, 157 - 165, 25.12.2019

Abstract




In this problem, we study the solution to boundary value problem for a
controlled oscillation process, described by Fredholm integro-differential
equation with an inhomogeneous boundary condition. An algorithm is developed
for constructing a generalized solution of boundary value problem. It is
proved that a weak generalized solution is an element of Hilbert space.
Approximate solutions of the boundary value problem are determined and their
convergence is proved.


 



References

  • [1] Vladimirov V.S.,” Matematicheskie zadachi odnoskorostnoi toerii perenosa chastis”, Trudy MİAN,Т.61,(1961),130-158.
  • [2] Volterra V., Teoriya funksionalov,integrelnyh i integro- differensiyalnyh uravneniy.Moskva, Nauka, 1982..
  • [3] Tyn Myint-U, Lokenath, Partial Differential Equations for Scientists and Engineers, Prentice Hall, 1987.
  • [4] Tihonov A.I. and Samarskiy А.А., Uravneniye matematicheskoy fiziki. Мoskva, Nauka,1972.
  • [5] Sharma J.N., Kehar Singh, Partial Differential Equations For Engineers and Scientists, Alpha Science İnternational Ltd. 2000, UK.
  • [6] Aramanovich İ.G. and Levin V.İ., Uravneniye matematicheskoy fiziki. İzdatelstvo Nauka, 1969.
  • [7] Denemeyer R. Introduction to: Partial Differential Equations and Boundary Value Problems, McGraw-Hill Book Company, New York, 1968.
  • [8] Snedon I.N., Elements of Partial Differential Equations, dover Publications, INC.,New York ,2006.
  • [9] Chaglıyan M., Chelebi O., Kysmi Diferensiyel Denklemler, Uludag Üniversitesi Guchlendirme Vakfı,Yayın No:196,VİPASH A.SH.,Yayın No:72,2002.
  • [10] Koca K., Kysmi Diferensiyel Denklemler, Gunduz Egitim ve Yayıncılık, Ankara, 2001.
  • [11] Anar E., Kısmi Diferensiyel Denklemler, Palme Yayıncılık,Ankara,2005.
  • [12] Kerimbekov A., Abdyldaeva E., “On the Solvability of a Nonlinear Tracking Problem Under Boundary Control for the Elastic Oscillations Described by Fredholm Integro-Differential Equations”, System Modeling and Optimization Dergisi. 27th IFIP TC 7 Conference, CSMO 2015. Sophia Antipolis, France, June 29–July 3, 2015. Revised Selected Papers. Sprınger. 2017. 312-322 р
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Elmira Abdyldaeva 0000-0002-3874-9055

Gulbarchyn Taalaibek Kyzy This is me 0000-0002-3874-9055

Bermet Anarkulova This is me 0000-0002-3874-9055

Publication Date December 25, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Abdyldaeva, E., Taalaibek Kyzy, G., & Anarkulova, B. (2019). Generalized solution of boundary value problem with an inhomogeneous boundary condition. MANAS Journal of Engineering, 7(2), 157-165.
AMA Abdyldaeva E, Taalaibek Kyzy G, Anarkulova B. Generalized solution of boundary value problem with an inhomogeneous boundary condition. MJEN. December 2019;7(2):157-165.
Chicago Abdyldaeva, Elmira, Gulbarchyn Taalaibek Kyzy, and Bermet Anarkulova. “Generalized Solution of Boundary Value Problem With an Inhomogeneous Boundary Condition”. MANAS Journal of Engineering 7, no. 2 (December 2019): 157-65.
EndNote Abdyldaeva E, Taalaibek Kyzy G, Anarkulova B (December 1, 2019) Generalized solution of boundary value problem with an inhomogeneous boundary condition. MANAS Journal of Engineering 7 2 157–165.
IEEE E. Abdyldaeva, G. Taalaibek Kyzy, and B. Anarkulova, “Generalized solution of boundary value problem with an inhomogeneous boundary condition”, MJEN, vol. 7, no. 2, pp. 157–165, 2019.
ISNAD Abdyldaeva, Elmira et al. “Generalized Solution of Boundary Value Problem With an Inhomogeneous Boundary Condition”. MANAS Journal of Engineering 7/2 (December 2019), 157-165.
JAMA Abdyldaeva E, Taalaibek Kyzy G, Anarkulova B. Generalized solution of boundary value problem with an inhomogeneous boundary condition. MJEN. 2019;7:157–165.
MLA Abdyldaeva, Elmira et al. “Generalized Solution of Boundary Value Problem With an Inhomogeneous Boundary Condition”. MANAS Journal of Engineering, vol. 7, no. 2, 2019, pp. 157-65.
Vancouver Abdyldaeva E, Taalaibek Kyzy G, Anarkulova B. Generalized solution of boundary value problem with an inhomogeneous boundary condition. MJEN. 2019;7(2):157-65.

Manas Journal of Engineering 

16155