Year 2020, Volume 8 , Issue 2, Pages 155 - 163 2020-12-21

On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)]

Burak OĞUL [1] , Dağistan ŞİMŞEK [2]


In this paper, given solutions fort he following difference equation x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)] where the initial conditions are positive real numbers. The initial conditions of the equation are arbitrary positive real numbers. We investigate periodic behavior of this equation. Also some numerical examples and graphs of solutions are given.
difference equations, recursive sequences, recursive
  • [1]. Amleh A. M., Grove E. A., Ladas G., Georgiou D. A., On the recursive sequence Anal. Appl., 233, 2, (1999),790-798.
  • [2]. Ari, M , elı şken, A., Periodic and asymptotic behavior of a difference equation. Asian-European Journal of Mathematics, 12, 6, (2019), 2040004.
  • [3]. Belhannache, F., Nouressadat T., and Raafat A., Dynamics of a third-order rational difference equation, Bull. Math. Soc. Sci. Math. Roumanie, 59, 1, (2016).
  • [4]. Cinar C., On the positive solutions of the difference equation x(n+1) = x(n-1) / [1+a x(n) x(n-1)], Appl. Math. Comp., 158, 3, (2004), 809–812.
  • [5]. Cinar C., On the positive solutions of the difference equation x(n+1) = x(n-1) / [-1+a x(n) x(n-1)], Appl. Math. Comp., 158, 3, (2004), 793–797.
  • [6]. Cinar C., On the positive solutions of the difference equation x(n+1) = a x(n-1) / [1+b x(n) x(n-1)], Appl. Math. Comp., 156, 3, (2004), 587–590.
  • [7]. Cı nar, , elı şken, A , Özkan, O , Well-defined solutions of the difference equation xn= xn− 3 kxn− 4 kxn− 5 kxn− kxn− 2 k (±1±xn− 3 kxn− 4 kxn− 5 k) Asian-European Journal of Mathematics, 12, 6, (2019), 2040016.
  • [8]. DeVault R., Ladas G., Schultz W.S., On the recursive sequence , Proc. Amer. Math. Soc., 126, 11, (1998), 3257-3261.
  • [9]. Elabbasy E. M., El-Metwally H., Elsayed E. M., On the difference equation , Advances in Difference Equation, (2006), 1-10.
  • 10]. Elabbasy E. M., El-Metwally H., Elsayed E. M., Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics, 33, 4, (2007), 861-873.
  • [11]. Elabbasy E. M., El-Metwally H., Elsayed E. M., Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Mathematical Journal, 53, (2007), 89-100.
  • [12]. Elabbasy E. M., El-Metwally H., Elsayed E. M., On the difference equation, J. Conc. Appl. Math., 5(2), (2007), 101-113.
  • [13]. Elabbasy E. M. and Elsayed E. M., On the Global Attractivity of Difference Equation of Higher Order, Carpathian Journal of Mathematics, 24, 2, (2008), 45–53.
  • [14]. Elsayed E. M., On the Solution of Recursive Sequence of Order Two, Fasciculi Mathematici, 40, (2008), 5–13.
  • [15]. Elsayed E. M., Dynamics of a rational recursive sequences. International Journal of Difference Equations, 4, 2, 185–200, 2009.
  • [16]. Elsayed E. M., Dynamics of a Recursive Sequence of Higher Order, Communications on Applied Nonlinear Analysis, 16, 2, (2009), 37–50.
  • [17]. Elsayed E. M., Solution and atractivity for a rational recursive sequence, Discrete Dynamics in Nature and Society, (2011), 17.
  • [18]. Elsayed E. M., On the solution of some difference equation, Europan Journal of Pure and Applied Mathematics, 4, 3, (2011), 287–303.
  • [19]. Elsayed E. M., On the Dynamics of a higher order rational recursive sequence, Communications in Mathematical Analysis, 12, 1, (2012), 117–133.
  • [20]. Elsayed E. M., Solution of rational difference system of order two, Mathematical and Computer Modelling, 55, (2012), 378–384.
  • [21]. Gelisken A., On A System of Rational Difference Equations, J. Comput. Anal. Appl, 23, 4, (2017), 593-606.
  • [22]. Gibbons C H , Kulenović M R S and Ladas , On the recursive sequence, Math. Sci. Res. Hot-Line, 4, 2, (2000), 1-11.
  • [23]. Ibrahim, T. F., Periodicity and analytic solution of a recursive sequence with numerical examples, Journal of Interdisciplinary Mathematics, 12, 5, (2009), 701-708.
  • [24]. Ibrahim, T. F. On the third order rational difference equation, Int. J. Contemp. Math. Sciences 4, 27, (2009), 1321-1334.
  • [25]. Ibrahim, T. F., and Touafek, N., On a third order rational difference equation with variable coefficients, DCDIS Series B: Applications & Algorithms 20, (2013), 251-264.
  • [26]. Ibrahim T. F., Periodicity and Global Attractivity of Difference Equation of Higher Order, Journal of Computational Analysis & Applications, 16, 1, (2014).
  • [27]. Khaliq A., Alzahrani F., and Elsayed E. M., Global attractivity of a rational difference equation of order ten, J. Nonlinear Sci. Appl, 9, 6, (2016), 4465-4477.
Primary Language en
Subjects Engineering
Journal Section Research Article
Authors

Orcid: 0000-0002-3264-4340
Author: Burak OĞUL (Primary Author)
Institution: KYRGYZ - TURKISH MANAS UNIVERSITY, INSTITUTE OF SCIENCE
Country: Turkey


Orcid: 0000-0003-3003-807X
Author: Dağistan ŞİMŞEK
Institution: KONYA TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ, ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ
Country: Turkey


Dates

Publication Date : December 21, 2020

Bibtex @research article { mjen748450, journal = {MANAS Journal of Engineering}, issn = {1694-7398}, eissn = {1694-7398}, address = {}, publisher = {Kyrgyz-Turkish Manas University}, year = {2020}, volume = {8}, pages = {155 - 163}, doi = {10.51354/mjen.748450}, title = {On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)]}, key = {cite}, author = {Oğul, Burak and Şi̇mşek, Dağistan} }
APA Oğul, B , Şi̇mşek, D . (2020). On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)] . MANAS Journal of Engineering , 8 (2) , 155-163 . DOI: 10.51354/mjen.748450
MLA Oğul, B , Şi̇mşek, D . "On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)]" . MANAS Journal of Engineering 8 (2020 ): 155-163 <https://dergipark.org.tr/en/pub/mjen/issue/58226/748450>
Chicago Oğul, B , Şi̇mşek, D . "On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)]". MANAS Journal of Engineering 8 (2020 ): 155-163
RIS TY - JOUR T1 - On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)] AU - Burak Oğul , Dağistan Şi̇mşek Y1 - 2020 PY - 2020 N1 - doi: 10.51354/mjen.748450 DO - 10.51354/mjen.748450 T2 - MANAS Journal of Engineering JF - Journal JO - JOR SP - 155 EP - 163 VL - 8 IS - 2 SN - 1694-7398-1694-7398 M3 - doi: 10.51354/mjen.748450 UR - https://doi.org/10.51354/mjen.748450 Y2 - 2020 ER -
EndNote %0 MANAS Journal of Engineering On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)] %A Burak Oğul , Dağistan Şi̇mşek %T On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)] %D 2020 %J MANAS Journal of Engineering %P 1694-7398-1694-7398 %V 8 %N 2 %R doi: 10.51354/mjen.748450 %U 10.51354/mjen.748450
ISNAD Oğul, Burak , Şi̇mşek, Dağistan . "On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)]". MANAS Journal of Engineering 8 / 2 (December 2020): 155-163 . https://doi.org/10.51354/mjen.748450
AMA Oğul B , Şi̇mşek D . On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)]. MJEN. 2020; 8(2): 155-163.
Vancouver Oğul B , Şi̇mşek D . On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)]. MANAS Journal of Engineering. 2020; 8(2): 155-163.
IEEE B. Oğul and D. Şi̇mşek , "On the Recursive Sequence x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)]", MANAS Journal of Engineering, vol. 8, no. 2, pp. 155-163, Dec. 2020, doi:10.51354/mjen.748450