Abstract
Asymptotic study of singularly perturbed differential equations of hyperbolic type has received relatively little attention from researchers. In this paper, the asymptotic solution of the singularly perturbed Cauchy problem for a hyperbolic system is constructed. In addition, the regularization method for singularly perturbed problems of S. A. Lomov is used for the first time for the asymptotic solution of a hyperbolic system. It is shown that this approach greatly simplifies the construction of the asymptotics of the solution for singularly perturbed differential equations of hyperbolic type.