Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 1, 1 - 8, 30.04.2025
https://doi.org/10.47087/mjm.1541646

Abstract

References

  • M. E. Azhari, Functional continuity of unital B0-algebras with orthogonal bases, Le matematiche, 72 (2017), 97-102
  • V.K. Balachandran, Topological Algebras, North-Holland, Amsterdam, 2000.
  • S. J. Bhatt and G. M. Deheri, Kothe spaces and topological algebra with bases, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 100, No. 3, 1990, pp. 259-273
  • S. J. Bhatt and G. M. Deheri, Orthogonal bases in a topological algebra are Schauder bases, Internat. J. Math. & Math. Sci. 15 (1992), 203-204
  • P.G. Dixon and D.H. Fremlin, A remark concerning multiplicative functionals on LMC algebras, J. Lond. Math. Soc. 5 (1972) 231–232
  • T. Husain, Positive functionals on topological algebras with bases, Math. Japonica, 28 (1983), 683-687.
  • T. Husain, J. Liang, Multiplicative functionals on Frechet algebras with bases, Canad. J. Math. 29 (1977), 270-276
  • T. Husain, J. Liang, Continuity of multiplicative linear functionals on Frechet algebras with bases, Bull. Soc. Roy. Sc Li´ege, 46 (1977), 8-11
  • Husain T and Watson S, Topological algebras with orthogonal Schauder basis, Pacific J. Math. 91 (1980) 339-347
  • Husain T and Watson S, Algebras with unconditional orthogonal basis, Proc. Am. Math. Soc. 79 (1980) 539-545
  • S. Loganathan and C.G. Moorthy, A net convergence for Schauder double bases, Asian-Eur. J. Math. 9 (2016) 33 pp.
  • E.A. Michael, Locally Multiplicatively Convex Topological Algebras, Mem. Amer. Math. Soc. 11, Amer. Math. Soc. Providence, RI, 1952.
  • AR. Murugan, C. Ganesa Moorthy and CT. Ramasamy, Directed bases with net convergence, Surveys in Mathematics and its Applications, 19 (2024), 57 – 66.
  • W. Rudin, Functional Analysis, Mc Graw Hill, New York, 1973.
  • Z. Sawon and Z. Wronski, Fr´echet algebras with orthogonal bases, Colloq. Math. 48 (1984), 103-110
  • I. Singer, Bases in Banach Spaces I, Springer, New York, 1970.
  • G. Siva and C.G. Moorthy, Functional continuity of topological algebras with orthonormal bases, Asian-Eur. J. Math. 14 (2021) Article no. 2150059, 15 pp
  • G. Siva, and C.G. Moorthy, Reviewed techniques in automatic continuity of linear functionals, Khayyam J. Math. 9 (2023), no. 1, 1-29

Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases

Year 2025, Volume: 7 Issue: 1, 1 - 8, 30.04.2025
https://doi.org/10.47087/mjm.1541646

Abstract

A main result of this article establishes that every involution in a sequentially complete locally convex topological algebra with an orthonormal generalized basis is bounded. This result is obtained through a representation for involutions in these algebras.

References

  • M. E. Azhari, Functional continuity of unital B0-algebras with orthogonal bases, Le matematiche, 72 (2017), 97-102
  • V.K. Balachandran, Topological Algebras, North-Holland, Amsterdam, 2000.
  • S. J. Bhatt and G. M. Deheri, Kothe spaces and topological algebra with bases, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 100, No. 3, 1990, pp. 259-273
  • S. J. Bhatt and G. M. Deheri, Orthogonal bases in a topological algebra are Schauder bases, Internat. J. Math. & Math. Sci. 15 (1992), 203-204
  • P.G. Dixon and D.H. Fremlin, A remark concerning multiplicative functionals on LMC algebras, J. Lond. Math. Soc. 5 (1972) 231–232
  • T. Husain, Positive functionals on topological algebras with bases, Math. Japonica, 28 (1983), 683-687.
  • T. Husain, J. Liang, Multiplicative functionals on Frechet algebras with bases, Canad. J. Math. 29 (1977), 270-276
  • T. Husain, J. Liang, Continuity of multiplicative linear functionals on Frechet algebras with bases, Bull. Soc. Roy. Sc Li´ege, 46 (1977), 8-11
  • Husain T and Watson S, Topological algebras with orthogonal Schauder basis, Pacific J. Math. 91 (1980) 339-347
  • Husain T and Watson S, Algebras with unconditional orthogonal basis, Proc. Am. Math. Soc. 79 (1980) 539-545
  • S. Loganathan and C.G. Moorthy, A net convergence for Schauder double bases, Asian-Eur. J. Math. 9 (2016) 33 pp.
  • E.A. Michael, Locally Multiplicatively Convex Topological Algebras, Mem. Amer. Math. Soc. 11, Amer. Math. Soc. Providence, RI, 1952.
  • AR. Murugan, C. Ganesa Moorthy and CT. Ramasamy, Directed bases with net convergence, Surveys in Mathematics and its Applications, 19 (2024), 57 – 66.
  • W. Rudin, Functional Analysis, Mc Graw Hill, New York, 1973.
  • Z. Sawon and Z. Wronski, Fr´echet algebras with orthogonal bases, Colloq. Math. 48 (1984), 103-110
  • I. Singer, Bases in Banach Spaces I, Springer, New York, 1970.
  • G. Siva and C.G. Moorthy, Functional continuity of topological algebras with orthonormal bases, Asian-Eur. J. Math. 14 (2021) Article no. 2150059, 15 pp
  • G. Siva, and C.G. Moorthy, Reviewed techniques in automatic continuity of linear functionals, Khayyam J. Math. 9 (2023), no. 1, 1-29
There are 18 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Ramasamy Ct 0000-0002-2917-0092

Ganesa Moorthy C 0000-0003-3119-7531

Ramkumar Solai 0000-0001-5011-774X

Submission Date September 1, 2024
Acceptance Date November 1, 2024
Publication Date April 30, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Ct, R., C, G. M., & Solai, R. (2025). Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics, 7(1), 1-8. https://doi.org/10.47087/mjm.1541646
AMA 1.Ct R, C GM, Solai R. Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics. 2025;7(1):1-8. doi:10.47087/mjm.1541646
Chicago Ct, Ramasamy, Ganesa Moorthy C, and Ramkumar Solai. 2025. “Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases”. Maltepe Journal of Mathematics 7 (1): 1-8. https://doi.org/10.47087/mjm.1541646.
EndNote Ct R, C GM, Solai R (April 1, 2025) Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics 7 1 1–8.
IEEE [1]R. Ct, G. M. C, and R. Solai, “Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases”, Maltepe Journal of Mathematics, vol. 7, no. 1, pp. 1–8, Apr. 2025, doi: 10.47087/mjm.1541646.
ISNAD Ct, Ramasamy - C, Ganesa Moorthy - Solai, Ramkumar. “Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases”. Maltepe Journal of Mathematics 7/1 (April 1, 2025): 1-8. https://doi.org/10.47087/mjm.1541646.
JAMA 1.Ct R, C GM, Solai R. Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics. 2025;7:1–8.
MLA Ct, Ramasamy, et al. “Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases”. Maltepe Journal of Mathematics, vol. 7, no. 1, Apr. 2025, pp. 1-8, doi:10.47087/mjm.1541646.
Vancouver 1.Ct R, C GM, Solai R. Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics [Internet]. 2025 Apr. 1;7(1):1-8. Available from: https://izlik.org/JA28SZ83HU

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660