Research Article
BibTex RIS Cite
Year 2019, Volume: 1 Issue: 2, 56 - 65, 30.10.2019

Abstract

References

  • [1] S. V. Djordjevic, R. E. Harte and D. A. Larson, Partially hyperinvariant subspaces, Oper- ators Matrices, 6 (2012) 97-106.
  • [2] R. E. Harte, Commutivity and separation of spectra II, Proc. Royal Irish Acad. 74A (1974) 239-244.
  • [3] R. E. Harte, Cayley-Hamilton for eigenvalues, Irish Math. Soc. Bull. 22 (1989) 66-68.
  • [4] R. E. Harte, Block diagonalization in Banach algebras, Proc. Amer. Math. Soc. 129 (2001) 181-190.
  • [5] R. E. Harte, Spectral mapping theorems, a blu er's guide, Springer Briefs, (2014).
  • [6] R. E. Harte, On non commutative Taylor invertibility,Operators Matrices, 10 (2016) 1117- 1131.
  • [7] R. E. Harte and C. M. Stack, Invertibility of spectral triangles, Operators Matrices, 1 (2007) 445-453.
  • [8] R. E. Harte and C. M. Stack, Separation of spectra for block triangles, Proc. Amer. Math. Soc. 136 (2008) 3159-3164.
  • [9] J.J. Koliha, Block diagonalization,Math. Bohemica, 126 (2001) 237-246.
  • [10] D. Rosenthal and P. Rosenthal, A readable introduction to real mathematics, Springer, (2014).
  • [11] C. J. Read, All primes have closed range, Bull. London Math. Soc.33 (2001) 341-346.

Spectral Disjointness and Invariant Subspaces

Year 2019, Volume: 1 Issue: 2, 56 - 65, 30.10.2019

Abstract

Spectral disjointness confers a certain mutual independence on pairs of Banach algebra elements. Necessary and sufficient for full spectral disjointness of diagonal elements is that the structural idempotent is a holomorphic function of a block diagonal matrix, while a partial left-right spectral disjointness is sufficient for membership of the double commutant. For bounded linear Banach space operators with an invariant subspace, spectral disjointness for the restriction and quotient operators implies both hyperinvariance and reducing.

References

  • [1] S. V. Djordjevic, R. E. Harte and D. A. Larson, Partially hyperinvariant subspaces, Oper- ators Matrices, 6 (2012) 97-106.
  • [2] R. E. Harte, Commutivity and separation of spectra II, Proc. Royal Irish Acad. 74A (1974) 239-244.
  • [3] R. E. Harte, Cayley-Hamilton for eigenvalues, Irish Math. Soc. Bull. 22 (1989) 66-68.
  • [4] R. E. Harte, Block diagonalization in Banach algebras, Proc. Amer. Math. Soc. 129 (2001) 181-190.
  • [5] R. E. Harte, Spectral mapping theorems, a blu er's guide, Springer Briefs, (2014).
  • [6] R. E. Harte, On non commutative Taylor invertibility,Operators Matrices, 10 (2016) 1117- 1131.
  • [7] R. E. Harte and C. M. Stack, Invertibility of spectral triangles, Operators Matrices, 1 (2007) 445-453.
  • [8] R. E. Harte and C. M. Stack, Separation of spectra for block triangles, Proc. Amer. Math. Soc. 136 (2008) 3159-3164.
  • [9] J.J. Koliha, Block diagonalization,Math. Bohemica, 126 (2001) 237-246.
  • [10] D. Rosenthal and P. Rosenthal, A readable introduction to real mathematics, Springer, (2014).
  • [11] C. J. Read, All primes have closed range, Bull. London Math. Soc.33 (2001) 341-346.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Robin Harte

Publication Date October 30, 2019
Acceptance Date October 6, 2019
Published in Issue Year 2019 Volume: 1 Issue: 2

Cite

APA Harte, R. (2019). Spectral Disjointness and Invariant Subspaces. Maltepe Journal of Mathematics, 1(2), 56-65.
AMA Harte R. Spectral Disjointness and Invariant Subspaces. Maltepe Journal of Mathematics. October 2019;1(2):56-65.
Chicago Harte, Robin. “Spectral Disjointness and Invariant Subspaces”. Maltepe Journal of Mathematics 1, no. 2 (October 2019): 56-65.
EndNote Harte R (October 1, 2019) Spectral Disjointness and Invariant Subspaces. Maltepe Journal of Mathematics 1 2 56–65.
IEEE R. Harte, “Spectral Disjointness and Invariant Subspaces”, Maltepe Journal of Mathematics, vol. 1, no. 2, pp. 56–65, 2019.
ISNAD Harte, Robin. “Spectral Disjointness and Invariant Subspaces”. Maltepe Journal of Mathematics 1/2 (October 2019), 56-65.
JAMA Harte R. Spectral Disjointness and Invariant Subspaces. Maltepe Journal of Mathematics. 2019;1:56–65.
MLA Harte, Robin. “Spectral Disjointness and Invariant Subspaces”. Maltepe Journal of Mathematics, vol. 1, no. 2, 2019, pp. 56-65.
Vancouver Harte R. Spectral Disjointness and Invariant Subspaces. Maltepe Journal of Mathematics. 2019;1(2):56-65.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660