Research Article
BibTex RIS Cite

Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces

Year 2020, Volume: 2 Issue: 1, 14 - 26, 30.04.2020

Abstract

We define Noor iteration procedure and, Abbas and Nazir iteration procedure associated
with three self maps in the setting of convex metric spaces . We prove that these
iterations converge strongly to a unique common fixed point of three nonlinear quasicontractive
self maps in convex metric spaces. One of our results (Theorem 2.2) extend
the results of Sastry, Babu and Srinivasa Rao [10].

References

  • [1] M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik., 66(2) (2014), 223-234.
  • [2] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999.
  • [3] L. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., ´ 45(2) (1974), 267-273.
  • [4] L. B. Ciric, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi- ´ contractive mappings, Indian J. Pure Appl. Math., 30(4) (1999), 425-433.
  • [5] X. P. Ding, Iteration processes for nonlinear mappings in convex metric spaces, J. Math. Anal. Appl., 132(1) (1988), 114-122.
  • [6] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1) (1974), 147-150.
  • [7] M. Moosaei, Fixed point theorems in convex metric spaces, Fixed Point Theory and Appl., Vol. 2012(2012), Article 164, 6 pages.
  • [8] M. A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251(1) (2000), 217-229.
  • [9] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for nonlinear quasi-contractive mappings in convex metric spaces, Tamkang J. Math., 32(2) (2001), 117-126.
  • [10] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for a nonlinear quasi-contractive pair of selfmaps in convex metric spaces, Indian J. Pure Appl. Math., 33(2) (2002), 203-214.
  • [11] W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep., 22(2) (1970), 142-149.
Year 2020, Volume: 2 Issue: 1, 14 - 26, 30.04.2020

Abstract

References

  • [1] M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik., 66(2) (2014), 223-234.
  • [2] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999.
  • [3] L. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., ´ 45(2) (1974), 267-273.
  • [4] L. B. Ciric, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi- ´ contractive mappings, Indian J. Pure Appl. Math., 30(4) (1999), 425-433.
  • [5] X. P. Ding, Iteration processes for nonlinear mappings in convex metric spaces, J. Math. Anal. Appl., 132(1) (1988), 114-122.
  • [6] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1) (1974), 147-150.
  • [7] M. Moosaei, Fixed point theorems in convex metric spaces, Fixed Point Theory and Appl., Vol. 2012(2012), Article 164, 6 pages.
  • [8] M. A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251(1) (2000), 217-229.
  • [9] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for nonlinear quasi-contractive mappings in convex metric spaces, Tamkang J. Math., 32(2) (2001), 117-126.
  • [10] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for a nonlinear quasi-contractive pair of selfmaps in convex metric spaces, Indian J. Pure Appl. Math., 33(2) (2002), 203-214.
  • [11] W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep., 22(2) (1970), 142-149.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Gedala Satyanarayana

G. V. R. Babu

Publication Date April 30, 2020
Acceptance Date April 2, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Satyanarayana, G., & Babu, G. V. R. (2020). Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics, 2(1), 14-26.
AMA Satyanarayana G, Babu GVR. Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics. April 2020;2(1):14-26.
Chicago Satyanarayana, Gedala, and G. V. R. Babu. “Convergence of Noor, and Abbas and Nazir Iteration Procedures for a Class of Three Nonlinear Quasi Contractive Maps in Convex Metric Spaces”. Maltepe Journal of Mathematics 2, no. 1 (April 2020): 14-26.
EndNote Satyanarayana G, Babu GVR (April 1, 2020) Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics 2 1 14–26.
IEEE G. Satyanarayana and G. V. R. Babu, “Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces”, Maltepe Journal of Mathematics, vol. 2, no. 1, pp. 14–26, 2020.
ISNAD Satyanarayana, Gedala - Babu, G. V. R. “Convergence of Noor, and Abbas and Nazir Iteration Procedures for a Class of Three Nonlinear Quasi Contractive Maps in Convex Metric Spaces”. Maltepe Journal of Mathematics 2/1 (April 2020), 14-26.
JAMA Satyanarayana G, Babu GVR. Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics. 2020;2:14–26.
MLA Satyanarayana, Gedala and G. V. R. Babu. “Convergence of Noor, and Abbas and Nazir Iteration Procedures for a Class of Three Nonlinear Quasi Contractive Maps in Convex Metric Spaces”. Maltepe Journal of Mathematics, vol. 2, no. 1, 2020, pp. 14-26.
Vancouver Satyanarayana G, Babu GVR. Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics. 2020;2(1):14-26.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660