Research Article
BibTex RIS Cite
Year 2022, Volume: 4 Issue: 2, 33 - 37, 30.10.2022
https://doi.org/10.47087/mjm.1156370

Abstract

References

  • Aytac A., Odabas Z.N. Residual closeness of wheels and related networks. IJFCS 22(5) (2011) 1229-1240. doi: 10.1142/S0129054111008660.
  • Aytac A., Odabas Berberler Z.N., TWMS Journal of Applied and Engineering Mathematics (TWMS J. of Apl. Eng. Math.), Residual Closeness For Helm and Sunflower Graphs , 7(2) (2017) 209-220.
  • Aytac A., Odabas Berberler Z.N., RAIRO-Operations Research, Network robustness and residual closeness, 52(3) (2018) 839-847.
  • Aytac A., Odabas Berberler Z.N., International Journal of Foundations of Computer Science, Robustness of regular caterpillars, 28(7) (2017) 835-841.
  • Aytac V., Turaci T. Closeness centrality in somesplitting networks. Computer Science Journal of Moldova., 26(3) (2018) 251-269 ID: 57760763.
  • Berberler ZN, Yigit E., Link Vulnerability in Networks. IJFCS., 29(3) (2018) 447-456. URL https://doi.org/10.1142/S0129054118500077.
  • Chartrand G. and Lesniak L. Graphs and Digraphs: Fourth Edition,. Chapman and Hall/CRC Inc., Boca Raton, Fl. (2005).
  • Chen, W.-C.; Lu, H.-I; and Yeh, Y.-N. Operations of Interlaced Trees and Graceful Trees, Southeast Asian Bull. Math. 21 (1997) 337-348.
  • Dangalchev Ch., Residual closeness in networks, Physica A Statistical Mechanics and Its Applications, 365 (2006) 556-564.
  • Dangalchev Ch., Residual Closeness of Generalized Thorn Graphs. Fundamenta Informaticae., 162(1) (2018) 1-15. doi:10.3233/FI-2018-1710.
  • Dangalchev Ch. Closeness of Splitting Graphs. C.R. Acad. Bulg. Sci., 73(4) (2020) 461-466.
  • Dangalchev Ch. Residual closeness and generalized closeness. IJFCS., 22(8) (2011) 1939-1947. doi:10.1016/j.physa.2005.12.020.
  • Freeman L.C., Centrality in social networks: conceptual clarification, Social Networks 1 (1979) 215.
  • Latora V., Marchiori M., Efficient behavior of small-world networks, Phys. Rev. Lett. 87 (2001).
  • Odabas Z.N, Aytac A. Residual closeness in cycles and related networks. Fundamenta Informaticae., 124 (3) (2013) 297-307. doi:10.3233/FI-2013-835.
  • Turaci T., Okten M. Vulnerability of Mycielski graphs via residual closeness, Ars Combinatoria., 118 (2015) 419-427.
  • Turaci T. and Aytac V., Residual closeness of splitting networks , Ars Combin. 130 (2017), 17-27.

VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS

Year 2022, Volume: 4 Issue: 2, 33 - 37, 30.10.2022
https://doi.org/10.47087/mjm.1156370

Abstract

One of the most important research topics about complex networks
is examination of their vulnerability. Therefore, there are many studies
in the literature about analyzing the robustness and reliability of networks
using graph theoretical parameters. Among these parameters, the centrality
parameters play an important role.The closeness parameters and its derivatives
are widely discussed. In this study, the closeness parameter and the more sensitive
parameter residual closeness which is based on closeness parameter have
been considered.Furthermore, the closeness and residual closeness of banana
tree structure have been calculated.

References

  • Aytac A., Odabas Z.N. Residual closeness of wheels and related networks. IJFCS 22(5) (2011) 1229-1240. doi: 10.1142/S0129054111008660.
  • Aytac A., Odabas Berberler Z.N., TWMS Journal of Applied and Engineering Mathematics (TWMS J. of Apl. Eng. Math.), Residual Closeness For Helm and Sunflower Graphs , 7(2) (2017) 209-220.
  • Aytac A., Odabas Berberler Z.N., RAIRO-Operations Research, Network robustness and residual closeness, 52(3) (2018) 839-847.
  • Aytac A., Odabas Berberler Z.N., International Journal of Foundations of Computer Science, Robustness of regular caterpillars, 28(7) (2017) 835-841.
  • Aytac V., Turaci T. Closeness centrality in somesplitting networks. Computer Science Journal of Moldova., 26(3) (2018) 251-269 ID: 57760763.
  • Berberler ZN, Yigit E., Link Vulnerability in Networks. IJFCS., 29(3) (2018) 447-456. URL https://doi.org/10.1142/S0129054118500077.
  • Chartrand G. and Lesniak L. Graphs and Digraphs: Fourth Edition,. Chapman and Hall/CRC Inc., Boca Raton, Fl. (2005).
  • Chen, W.-C.; Lu, H.-I; and Yeh, Y.-N. Operations of Interlaced Trees and Graceful Trees, Southeast Asian Bull. Math. 21 (1997) 337-348.
  • Dangalchev Ch., Residual closeness in networks, Physica A Statistical Mechanics and Its Applications, 365 (2006) 556-564.
  • Dangalchev Ch., Residual Closeness of Generalized Thorn Graphs. Fundamenta Informaticae., 162(1) (2018) 1-15. doi:10.3233/FI-2018-1710.
  • Dangalchev Ch. Closeness of Splitting Graphs. C.R. Acad. Bulg. Sci., 73(4) (2020) 461-466.
  • Dangalchev Ch. Residual closeness and generalized closeness. IJFCS., 22(8) (2011) 1939-1947. doi:10.1016/j.physa.2005.12.020.
  • Freeman L.C., Centrality in social networks: conceptual clarification, Social Networks 1 (1979) 215.
  • Latora V., Marchiori M., Efficient behavior of small-world networks, Phys. Rev. Lett. 87 (2001).
  • Odabas Z.N, Aytac A. Residual closeness in cycles and related networks. Fundamenta Informaticae., 124 (3) (2013) 297-307. doi:10.3233/FI-2013-835.
  • Turaci T., Okten M. Vulnerability of Mycielski graphs via residual closeness, Ars Combinatoria., 118 (2015) 419-427.
  • Turaci T. and Aytac V., Residual closeness of splitting networks , Ars Combin. 130 (2017), 17-27.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Hande Tunçel Gölpek 0000-0001-9183-6732

Publication Date October 30, 2022
Acceptance Date August 26, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Tunçel Gölpek, H. (2022). VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS. Maltepe Journal of Mathematics, 4(2), 33-37. https://doi.org/10.47087/mjm.1156370
AMA Tunçel Gölpek H. VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS. Maltepe Journal of Mathematics. October 2022;4(2):33-37. doi:10.47087/mjm.1156370
Chicago Tunçel Gölpek, Hande. “VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS”. Maltepe Journal of Mathematics 4, no. 2 (October 2022): 33-37. https://doi.org/10.47087/mjm.1156370.
EndNote Tunçel Gölpek H (October 1, 2022) VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS. Maltepe Journal of Mathematics 4 2 33–37.
IEEE H. Tunçel Gölpek, “VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS”, Maltepe Journal of Mathematics, vol. 4, no. 2, pp. 33–37, 2022, doi: 10.47087/mjm.1156370.
ISNAD Tunçel Gölpek, Hande. “VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS”. Maltepe Journal of Mathematics 4/2 (October 2022), 33-37. https://doi.org/10.47087/mjm.1156370.
JAMA Tunçel Gölpek H. VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS. Maltepe Journal of Mathematics. 2022;4:33–37.
MLA Tunçel Gölpek, Hande. “VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS”. Maltepe Journal of Mathematics, vol. 4, no. 2, 2022, pp. 33-37, doi:10.47087/mjm.1156370.
Vancouver Tunçel Gölpek H. VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS. Maltepe Journal of Mathematics. 2022;4(2):33-7.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660