Research Article
BibTex RIS Cite
Year 2024, Volume: 6 Issue: 2, 90 - 102, 08.11.2024
https://doi.org/10.47087/mjm.1515500

Abstract

References

  • M.E. Abd El-Monsef, S.N. El-Deeb, and R.A. Mahmoud, β-open sets and β-continuous Mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77-90.
  • A. Acikgoz, H. Cakalli, F. Esenbel, and Lj.D.R. Kočinac, A quest of G-continuity in neutrosophic spaces, Math. Meth. Appl. Sci. 44 (9) (2021) 7834-7844.
  • A. Acikgoz, and F. Esenbel, Neutrosophic Connected topological spaces, Fasc. Math. 66 (2023) 5-22.
  • A. Acikgoz, F. Esenbel and O. Mucuk, Neutrosophication β-Compactness, Seventh International Conference of Mathematical Sciences (ICMS 2023) Abstract Book page 17 Maltepe University Istanbul Turkey.
  • A. Acikgoz, and F. Esenbel F. Neutrosophic seperation axioms, Maltepe J Math. 5(2), (2023) 32–40.
  • B. Ganesan, On fuzzy β-compact spaces and fuzzy β-extremally disconnected spaces, Kybernetika [cybernetics] 33(3) (1997) 271-277.
  • R. Dhavaseelan, S. Jafari, C. Ozel, and C.M. A Al-Shumrani, Generalized neutrosophic contra-continuity, In: F Smarandache, S Pramanik, eds. New Trends in Neutrosophic Theory and Applications Vol. II (2018) 365-380.
  • I.M. Hanafy, Fuzzy β-Compactness and Fuzzy β-Closed Spaces, Turk J Math. 28 (2004) 281–293.
  • A.A. Salama, and S.A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR J. Math. 3 (2012) 31-35.
  • F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005) 287-297.

NEUTROSOPHICATION β-COMPACTNESS

Year 2024, Volume: 6 Issue: 2, 90 - 102, 08.11.2024
https://doi.org/10.47087/mjm.1515500

Abstract

In this study, we first define the concept of neutrosophic beta-open set. Then, using this new set definition, we present neutrosophic beta-compact and neutrosophic beta-closed spaces and examine their properties. Also, we classify these spaces using the concept of neutrosophic filterbase, which is introduced for the first time in this study. And, relationships between these different types and forms of compactness are investigated.

References

  • M.E. Abd El-Monsef, S.N. El-Deeb, and R.A. Mahmoud, β-open sets and β-continuous Mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77-90.
  • A. Acikgoz, H. Cakalli, F. Esenbel, and Lj.D.R. Kočinac, A quest of G-continuity in neutrosophic spaces, Math. Meth. Appl. Sci. 44 (9) (2021) 7834-7844.
  • A. Acikgoz, and F. Esenbel, Neutrosophic Connected topological spaces, Fasc. Math. 66 (2023) 5-22.
  • A. Acikgoz, F. Esenbel and O. Mucuk, Neutrosophication β-Compactness, Seventh International Conference of Mathematical Sciences (ICMS 2023) Abstract Book page 17 Maltepe University Istanbul Turkey.
  • A. Acikgoz, and F. Esenbel F. Neutrosophic seperation axioms, Maltepe J Math. 5(2), (2023) 32–40.
  • B. Ganesan, On fuzzy β-compact spaces and fuzzy β-extremally disconnected spaces, Kybernetika [cybernetics] 33(3) (1997) 271-277.
  • R. Dhavaseelan, S. Jafari, C. Ozel, and C.M. A Al-Shumrani, Generalized neutrosophic contra-continuity, In: F Smarandache, S Pramanik, eds. New Trends in Neutrosophic Theory and Applications Vol. II (2018) 365-380.
  • I.M. Hanafy, Fuzzy β-Compactness and Fuzzy β-Closed Spaces, Turk J Math. 28 (2004) 281–293.
  • A.A. Salama, and S.A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR J. Math. 3 (2012) 31-35.
  • F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005) 287-297.
There are 10 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Ahu Açıkgöz 0000-0003-1468-8240

Ferhat Esenbel

Osman Mucuk 0000-0001-7411-2871

Early Pub Date November 6, 2024
Publication Date November 8, 2024
Submission Date July 12, 2024
Acceptance Date September 20, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Açıkgöz, A., Esenbel, F., & Mucuk, O. (2024). NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics, 6(2), 90-102. https://doi.org/10.47087/mjm.1515500
AMA Açıkgöz A, Esenbel F, Mucuk O. NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics. November 2024;6(2):90-102. doi:10.47087/mjm.1515500
Chicago Açıkgöz, Ahu, Ferhat Esenbel, and Osman Mucuk. “NEUTROSOPHICATION β-COMPACTNESS”. Maltepe Journal of Mathematics 6, no. 2 (November 2024): 90-102. https://doi.org/10.47087/mjm.1515500.
EndNote Açıkgöz A, Esenbel F, Mucuk O (November 1, 2024) NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics 6 2 90–102.
IEEE A. Açıkgöz, F. Esenbel, and O. Mucuk, “NEUTROSOPHICATION β-COMPACTNESS”, Maltepe Journal of Mathematics, vol. 6, no. 2, pp. 90–102, 2024, doi: 10.47087/mjm.1515500.
ISNAD Açıkgöz, Ahu et al. “NEUTROSOPHICATION β-COMPACTNESS”. Maltepe Journal of Mathematics 6/2 (November 2024), 90-102. https://doi.org/10.47087/mjm.1515500.
JAMA Açıkgöz A, Esenbel F, Mucuk O. NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics. 2024;6:90–102.
MLA Açıkgöz, Ahu et al. “NEUTROSOPHICATION β-COMPACTNESS”. Maltepe Journal of Mathematics, vol. 6, no. 2, 2024, pp. 90-102, doi:10.47087/mjm.1515500.
Vancouver Açıkgöz A, Esenbel F, Mucuk O. NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics. 2024;6(2):90-102.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660