Research Article
BibTex RIS Cite

Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases

Year 2025, Volume: 7 Issue: 1, 1 - 8, 30.04.2025
https://doi.org/10.47087/mjm.1541646

Abstract

A main result of this article establishes that every involution in a sequentially complete locally convex topological algebra with an orthonormal generalized basis is bounded. This result is obtained through a representation for involutions in these algebras.

References

  • M. E. Azhari, Functional continuity of unital B0-algebras with orthogonal bases, Le matematiche, 72 (2017), 97-102
  • V.K. Balachandran, Topological Algebras, North-Holland, Amsterdam, 2000.
  • S. J. Bhatt and G. M. Deheri, Kothe spaces and topological algebra with bases, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 100, No. 3, 1990, pp. 259-273
  • S. J. Bhatt and G. M. Deheri, Orthogonal bases in a topological algebra are Schauder bases, Internat. J. Math. & Math. Sci. 15 (1992), 203-204
  • P.G. Dixon and D.H. Fremlin, A remark concerning multiplicative functionals on LMC algebras, J. Lond. Math. Soc. 5 (1972) 231–232
  • T. Husain, Positive functionals on topological algebras with bases, Math. Japonica, 28 (1983), 683-687.
  • T. Husain, J. Liang, Multiplicative functionals on Frechet algebras with bases, Canad. J. Math. 29 (1977), 270-276
  • T. Husain, J. Liang, Continuity of multiplicative linear functionals on Frechet algebras with bases, Bull. Soc. Roy. Sc Li´ege, 46 (1977), 8-11
  • Husain T and Watson S, Topological algebras with orthogonal Schauder basis, Pacific J. Math. 91 (1980) 339-347
  • Husain T and Watson S, Algebras with unconditional orthogonal basis, Proc. Am. Math. Soc. 79 (1980) 539-545
  • S. Loganathan and C.G. Moorthy, A net convergence for Schauder double bases, Asian-Eur. J. Math. 9 (2016) 33 pp.
  • E.A. Michael, Locally Multiplicatively Convex Topological Algebras, Mem. Amer. Math. Soc. 11, Amer. Math. Soc. Providence, RI, 1952.
  • AR. Murugan, C. Ganesa Moorthy and CT. Ramasamy, Directed bases with net convergence, Surveys in Mathematics and its Applications, 19 (2024), 57 – 66.
  • W. Rudin, Functional Analysis, Mc Graw Hill, New York, 1973.
  • Z. Sawon and Z. Wronski, Fr´echet algebras with orthogonal bases, Colloq. Math. 48 (1984), 103-110
  • I. Singer, Bases in Banach Spaces I, Springer, New York, 1970.
  • G. Siva and C.G. Moorthy, Functional continuity of topological algebras with orthonormal bases, Asian-Eur. J. Math. 14 (2021) Article no. 2150059, 15 pp
  • G. Siva, and C.G. Moorthy, Reviewed techniques in automatic continuity of linear functionals, Khayyam J. Math. 9 (2023), no. 1, 1-29
Year 2025, Volume: 7 Issue: 1, 1 - 8, 30.04.2025
https://doi.org/10.47087/mjm.1541646

Abstract

References

  • M. E. Azhari, Functional continuity of unital B0-algebras with orthogonal bases, Le matematiche, 72 (2017), 97-102
  • V.K. Balachandran, Topological Algebras, North-Holland, Amsterdam, 2000.
  • S. J. Bhatt and G. M. Deheri, Kothe spaces and topological algebra with bases, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 100, No. 3, 1990, pp. 259-273
  • S. J. Bhatt and G. M. Deheri, Orthogonal bases in a topological algebra are Schauder bases, Internat. J. Math. & Math. Sci. 15 (1992), 203-204
  • P.G. Dixon and D.H. Fremlin, A remark concerning multiplicative functionals on LMC algebras, J. Lond. Math. Soc. 5 (1972) 231–232
  • T. Husain, Positive functionals on topological algebras with bases, Math. Japonica, 28 (1983), 683-687.
  • T. Husain, J. Liang, Multiplicative functionals on Frechet algebras with bases, Canad. J. Math. 29 (1977), 270-276
  • T. Husain, J. Liang, Continuity of multiplicative linear functionals on Frechet algebras with bases, Bull. Soc. Roy. Sc Li´ege, 46 (1977), 8-11
  • Husain T and Watson S, Topological algebras with orthogonal Schauder basis, Pacific J. Math. 91 (1980) 339-347
  • Husain T and Watson S, Algebras with unconditional orthogonal basis, Proc. Am. Math. Soc. 79 (1980) 539-545
  • S. Loganathan and C.G. Moorthy, A net convergence for Schauder double bases, Asian-Eur. J. Math. 9 (2016) 33 pp.
  • E.A. Michael, Locally Multiplicatively Convex Topological Algebras, Mem. Amer. Math. Soc. 11, Amer. Math. Soc. Providence, RI, 1952.
  • AR. Murugan, C. Ganesa Moorthy and CT. Ramasamy, Directed bases with net convergence, Surveys in Mathematics and its Applications, 19 (2024), 57 – 66.
  • W. Rudin, Functional Analysis, Mc Graw Hill, New York, 1973.
  • Z. Sawon and Z. Wronski, Fr´echet algebras with orthogonal bases, Colloq. Math. 48 (1984), 103-110
  • I. Singer, Bases in Banach Spaces I, Springer, New York, 1970.
  • G. Siva and C.G. Moorthy, Functional continuity of topological algebras with orthonormal bases, Asian-Eur. J. Math. 14 (2021) Article no. 2150059, 15 pp
  • G. Siva, and C.G. Moorthy, Reviewed techniques in automatic continuity of linear functionals, Khayyam J. Math. 9 (2023), no. 1, 1-29
There are 18 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Ramasamy Ct 0000-0002-2917-0092

Ganesa Moorthy C 0000-0003-3119-7531

Ramkumar Solai 0000-0001-5011-774X

Publication Date April 30, 2025
Submission Date September 1, 2024
Acceptance Date November 1, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Ct, R., C, G. M., & Solai, R. (2025). Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics, 7(1), 1-8. https://doi.org/10.47087/mjm.1541646
AMA Ct R, C GM, Solai R. Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics. April 2025;7(1):1-8. doi:10.47087/mjm.1541646
Chicago Ct, Ramasamy, Ganesa Moorthy C, and Ramkumar Solai. “Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases”. Maltepe Journal of Mathematics 7, no. 1 (April 2025): 1-8. https://doi.org/10.47087/mjm.1541646.
EndNote Ct R, C GM, Solai R (April 1, 2025) Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics 7 1 1–8.
IEEE R. Ct, G. M. C, and R. Solai, “Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases”, Maltepe Journal of Mathematics, vol. 7, no. 1, pp. 1–8, 2025, doi: 10.47087/mjm.1541646.
ISNAD Ct, Ramasamy et al. “Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases”. Maltepe Journal of Mathematics 7/1 (April 2025), 1-8. https://doi.org/10.47087/mjm.1541646.
JAMA Ct R, C GM, Solai R. Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics. 2025;7:1–8.
MLA Ct, Ramasamy et al. “Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases”. Maltepe Journal of Mathematics, vol. 7, no. 1, 2025, pp. 1-8, doi:10.47087/mjm.1541646.
Vancouver Ct R, C GM, Solai R. Boundedness Of Involutions In Topological Algebras With Orthonormal Generalized Bases. Maltepe Journal of Mathematics. 2025;7(1):1-8.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660