Review
BibTex RIS Cite

Sıçanlarda Akciğer Hasarının Değerlendirilmesi için Kullanılan Histolojik Derecelendirme Sistemleri

Year 2024, , 104 - 112, 30.08.2024
https://doi.org/10.29058/mjwbs.1472799

Abstract

Akut solunum sıkıntısı sendromu (ARDS), bakteriyel ve viral pnömoninin yanı sıra birçok nedenin tetiklediği, insanlarda klinik parametrelerin çok iyi tanımlanmış ciddi bir akciğer reaksiyonudur. Ancak deneysel hayvan modelinde ARDS parametrelerine ilişkin kesin bir tanımlama mevcut değildir. Amerikan Toraks Derneği 2010 çalıştay raporuyla laboratuvar hayvanlarında ARDS varlığını belirleyen parankimal dokuda değişiklikler, alveoler-kapiller bariyerin bütünlüğünün değişmesi, iltihaplanma ve anormal akciğer fonksiyonu gibi histopatolojik ana özellikler tanımlamıştır. Bu parametreleri anlamak ve gözlemsel patolojik verileri istatistiksel analiz ve gelişmiş kesinlik için yarı niceliksel veya niceliksel verilere dönüştürmek için doku lezyonlarının skorlanması yöntemi kullanılmaktadır.

References

  • 1. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;2(7511):319-23.
  • 2. Potere N, Valeriani E, Candeloro M, Tana M, Porreca E, Abbate A, Spoto S, Rutjes AWS, Di Nisio M. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Critical Care. 2020;24(1):389.
  • 3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • 4. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA internal medicine. 2020;180(7):934-943.
  • 5. Engel M, Nowacki RME, Jonker EM, Ophelders D, Nikiforou M, Kloosterboer N, Zimmermann LJI, van Waardenburg DA, Kramer BW. A comparison of four different models of acute respiratory distress syndrome in sheep. Respir Res. 2020;21(1):209.
  • 6. Pelosi P, D’Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL, Barbas CS, Chiaranda M, Gattinoni L. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. The European respiratory journal. Supplement. 2003;42:48s-56s.
  • 7. Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Advanced biology. 2022;6(2):e2101139.
  • 8. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818-24.
  • 9. ARDS Definition Task Force; Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-33.
  • 10. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM; Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725-38.
  • 11. Wang HM, Bodenstein M, Markstaller K. Overview of the pathology of three widely used animal models of acute lung injury. European surgical research. 2008;40(4):305-16.
  • 12. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. American journal of physiology. Lung cellular and molecular physiology. 2008;295(3):L379-99.
  • 13. Silva IAN, Gvazava N, Bölükbas DA, Stenlo M, Dong J, Hyllen S, Pierre L, Lindstedt S, Wagner DE. A Semi-quantitative Scoring System for Green Histopathological Evaluation of Large Animal Models of Acute Lung Injury. Bio-protocol. 2022;12(16):e4493.
  • 14. Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology--a systematic review. BMC veterinary research. 2013;9:123.
  • 15. Renshaw AA, Gould EW. Measuring errors in surgical pathology in real-life practice: defining what does and does not matter. American journal of clinical pathology. 2007;127(1):144-52.
  • 16. Kaminsky DA, Cockcroft DW, Davis BE. Respiratory System Dynamics. Seminars in respiratory and critical care medicine. 2023;44(5):526-537.
  • 17. Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochemistry and cell biology. 2018;150(6):661-676.
  • 18. McLafferty E, Johnstone C, Hendry C, Farley A. Respiratory system part 1: pulmonary ventilation. Nursing standard. 2013;27(22):40-7.
  • 19. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Veterinary pathology. 2013;50(6):1007-15.
  • 20. Chimenti L, Morales-Quinteros L, Puig F, Camprubi-Rimblas M, Guillamat-Prats R, Gómez MN, Tijero J, Blanch L, Matute- Bello G, Artigas A. Comparison of direct and indirect models of early induced acute lung injury. Intensive Care Med Exp. 2020;8(Suppl 1):62.
  • 21. Rosales C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Frontiers in physiology. 2018;9:113.
  • 22. Malech HL, Deleo FR, Quinn MT. The role of neutrophils in the immune system: an overview. Methods in molecular biology. 2014;1124:3-10.
  • 23. Ohtsuki Y, Fujita J, Yoshinouchi T, Enzan H, Iguchi M, Lee GH, Furihata M. Early Stages of Hyaline Membrane Formation Detected in Alveolar Mouths in Diffuse Alveolar-Damage-Associated Diseases: A Detailed Immunohistochemical Study. International journal of surgical pathology. 2015;23(7):524-30.
  • 24. Albogami SM, Touman AA. Viral pneumonia and pulmonary alveolar proteinosis: the cause and the effect, case report. AME case reports. 2019;3:41.
  • 25. Yousem SA. Respiratory bronchiolitis-associated interstitial lung disease with fibrosis is a lesion distinct from fibrotic nonspecific interstitial pneumonia: a proposal. Modern pathology. 2006;19(11):1474-9.
  • 26. Corrin B, Nicholson AG. Acute alveolar injury and repair. Pathology of the Lungs. 2011;135–53.
  • 27. Li Y, Wang SM, Li X, Lv CJ, Peng LY, Yu XF, Song YJ, Wang CJ. Pterostilbene pre-treatment reduces LPS-induced acute lung injury through activating NR4A1. Pharmaceutical biology. 2022;60(1):394-403.
  • 28. Zhu L, Wei M, Yang N, Li X. Glycyrrhizic acid alleviates the meconium-induced acute lung injury in neonatal rats by inhibiting oxidative stress through mediating the Keap1/Nrf2/HO-1 signal pathway. Bioengineered. 2021;12(1):2616-2626.
  • 29. Qin S, Wang H, Liu G, Mei H, Chen M. miR215p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats. Molecular medicine reports. 2019;20(6):4953-4962.
  • 30. Li R, Ren T, Zeng J. Mitochondrial Coenzyme Q Protects Sepsis- Induced Acute Lung Injury by Activating PI3K/Akt/GSK-3β/ mTOR Pathway in Rats. BioMed research international. 2019 Nov;2019:5240898.
  • 31. Kim SK, Rho SJ, Kim SH, Kim SY, Song SH, Yoo JY, Kim CH, Lee SH. Protective effects of diphenyleneiodonium, an NADPH oxidase inhibitor, on lipopolysaccharide-induced acute lung injury. Clinical and experimental pharmacology & physiology. 2019;46(2):153-162.
  • 32. Cho JY, Kim SJ, Woo CG, Kwon SK, Choe KH, Kim EG, Shin YM. Altered Lung Heat Shock Protein-70 Expression and Severity of Sepsis-Induced Acute Lung Injury in a Chronic Kidney Disease Rat Model. International journal of molecular sciences. 2023;24(6):5641.
  • 33. Yan X, Li Y, Choi YH, Wang C, Piao Y, Ye J, Jiang J, Li L, Xu H, Cui Q, Yan G, Jin M. Protective Effect and Mechanism of Alprostadil in Acute Respiratory Distress Syndrome Induced by Oleic Acid in Rats. Medical science monitor. 2018;24:7186- 7198.
  • 34. Xiong Z, Xu J, Liu X. Oxymatrine exerts a protective effect in myocardial ischemia/reperfusioninduced acute lung injury by inhibiting autophagy in diabetic rats. Mol Molecular medicine reports. 2021;23(3):183.
  • 35. Kong Q, Yuan M, Ming T, Fang Q, Wu X, Song X. Expression and regulation of tumor necrosis factor-α-induced protein-8- like 2 is associated with acute lung injury induced by myocardial ischemia reperfusion in diabetic rats. Microvascular research. 2020;130:104009.
  • 36. Chen S, Wu J, Yang L, Tailaiti T, Zou T, Huan Y, Wang J. Dexmedetomidine Leads to the Mitigation of Myocardial Ischemia/ Reperfusion-Induced Acute Lung Injury in Diabetic Rats Via Modulation of Hypoxia-Inducible Factor-1α. Brazilian journal of cardiovascular surgery. 2022;37(3):370-379.
  • 37. Ma S, Wang X, Yao J, Cao Q, Zuo X. Roles of apoptosis and inflammation in a rat model of acute lung injury induced right ventricular dysfunction. Biomedicine & pharmacotherapy. 2018;108:1105-1114.
  • 38. Liu J, Huang X, Hu S, He H, Meng Z. Dexmedetomidine attenuates lipopolysaccharide induced acute lung injury in rats by inhibition of caveolin-1 downstream signaling. Biomedicine & pharmacotherapy. 2019;118:109314.
  • 39. Zhang Y, He H, Zhang B, Chen Q, Yao S, Gui P. Amelioration of Lipopolysaccharide-Induced Acute Lung Injury in Rats by Na-H Exchanger-1 Inhibitor Amiloride Is Associated with Reversal of ERK Mitogen-Activated Protein Kinase. BioMed research international. 2018;2018:3560234.
  • 40. Jiang Y, Zhang W. LncRNA ZFAS1 plays a role in regulating the inflammatory responses in sepsis-induced acute lung injury via mediating miR-193a-3p. Infection, genetics and evolution. 2021;92:104860.
  • 41. Zheng L, Su J, Zhang Z, Jiang L, Wei J, Xu X, Lv S. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Scientific reports. 2020;10(1):20750.
  • 42. Fu H, Liang X, Tan W, Hu X. Unraveling the protective mechanisms of Chuanfangyihao against acute lung injury: Insights from experimental validation. Experimental and therapeutic medicine. 2023;26(5):535.
  • 43. Zhang FH, Hao H, Liu Y, Fan KL, Dai W, Liu WH, Kong L. Shenmai Injection Alleviates Acute Lung Injury in a Severe Acute Pancreatitis Rat Model via Heme Oxygenase-1 Upregulation. Alternative therapies in health and medicine. 2022;28(2):109- 115.
  • 44. Yang K, Li B, Chen J. Knockdown of phosphoinositide-dependent kinase 1 (PDK1) inhibits fibrosis and inflammation in lipopolysaccharide-induced acute lung injury rat model by attenuating NF-κB/p65 pathway activation. Annals of translational medicine. 2021;9(22):1671.
  • 45. Wang Y, Wang X, Liu W, Zhang L. Role of the Rho/ROCK signaling pathway in the protective effects of fasudil against acute lung injury in septic rats. Molecular medicine reports. 2018;18(5):4486-4498.
  • 46. Li Y, Wu B, Hu C, Hu J, Lian Q, Li J, Ma D. The role of the vagus nerve on dexmedetomidine promoting survival and lung protection in a sepsis model in rats. European journal of pharmacology. 2022;914:174668.
  • 47. Karakişi SO, Hemşinli D, Tümkaya L, Ergene Ş, Mercantepe T, Yılmaz A. Resveratrol against lung injury in an ischemia/reperfusion model of abdominal aortic rupture. Turk gogus kalp damar cerrahisi dergisi. 2021;29(3):330-338.
  • 48. Lin KC, Yeh JN, Chen YL, Chiang JY, Sung PH, Lee FY, Guo J, Yip HK. Xenogeneic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. Cell transplantation. 2020;29:963689720954140.
  • 49. Ren R, Wang X, Xu Z, Jiang W. Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo. Archives of pharmacal research. 2023;46(6):564-572.
  • 50. Yu X, Li C. Protective effects of propofol on experimental neonatal acute lung injury. Molecular medicine reports. 2019 May;19(5):4507-4513.
  • 51. Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis. Experimental lung research. 2021;47(4):183-197.
  • 52. Al-Gabri NA, Qaid MM, El-Shaer NH, Ali MH, Abudabos AM. Thymoquinone ameliorates pulmonary vascular damage induced byEscherichia coli-derived lipopolysaccharide via cytokine downregulation in rats. Environmental science and pollution research international. 2019;26(18):18465-18469.
  • 53. Wu D, Fu X, Zhang Y, Li Q, Ye L, Han S, Zhang M. The protective effects of C16 peptide and angiopoietin-1 compound in lipopolysaccharide- induced acute respiratory distress syndrome. Experimental biology and medicine. 2020;245(18):1683-1696.
  • 54. Adar A, Can EY, Elma Y, Ferah MA, Kececi M, Muderrisoglu H, Akbay E, Akıncı S, Coner A, Haberal C, Cakan F, Onalan O. A new and simple parameter for diagnosis pulmonary edema: Expiratory air humidity. Heart Lung. 2022;52:165-169.
  • 55. Atalay Ş. Karbon tetraklorür uygulanmış sıçanlarda kurkumin’in akciğer üzerindeki koruyucu etkisi (Yüksek Lisans Tezi), Zonguldak, Zonguldak Bülent Ecevit Üniversitesi,2023, 1-83. (https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni. jsp)

Histological Scoring Systems for the Assessment of the Degree of Lung Injury in Rats

Year 2024, , 104 - 112, 30.08.2024
https://doi.org/10.29058/mjwbs.1472799

Abstract

Acute respiratory distress syndrome (ARDS) is a serious pulmonary reaction with well-defined clinical parameters in humans triggered by many causes besides bacterial and viral pneumonia. However, there is no definitive definition of ARDS parameters in the experimental animal model. With its 2010 workshop report, the American Thoracic Society defined the main histopathological features that determine the presence of ARDS in laboratory animals, such as changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal lung function. Understanding these parameters, scoring tissue lesions is used to convert observational pathological data into semi-quantitative or quantitative data for statistical analysis and improved precision.

Ethical Statement

none

Supporting Institution

none

Thanks

We would like to thank the Dear Editor and the Referees who contributed to the development of the article.

References

  • 1. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;2(7511):319-23.
  • 2. Potere N, Valeriani E, Candeloro M, Tana M, Porreca E, Abbate A, Spoto S, Rutjes AWS, Di Nisio M. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Critical Care. 2020;24(1):389.
  • 3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • 4. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA internal medicine. 2020;180(7):934-943.
  • 5. Engel M, Nowacki RME, Jonker EM, Ophelders D, Nikiforou M, Kloosterboer N, Zimmermann LJI, van Waardenburg DA, Kramer BW. A comparison of four different models of acute respiratory distress syndrome in sheep. Respir Res. 2020;21(1):209.
  • 6. Pelosi P, D’Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL, Barbas CS, Chiaranda M, Gattinoni L. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. The European respiratory journal. Supplement. 2003;42:48s-56s.
  • 7. Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Advanced biology. 2022;6(2):e2101139.
  • 8. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818-24.
  • 9. ARDS Definition Task Force; Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-33.
  • 10. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM; Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725-38.
  • 11. Wang HM, Bodenstein M, Markstaller K. Overview of the pathology of three widely used animal models of acute lung injury. European surgical research. 2008;40(4):305-16.
  • 12. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. American journal of physiology. Lung cellular and molecular physiology. 2008;295(3):L379-99.
  • 13. Silva IAN, Gvazava N, Bölükbas DA, Stenlo M, Dong J, Hyllen S, Pierre L, Lindstedt S, Wagner DE. A Semi-quantitative Scoring System for Green Histopathological Evaluation of Large Animal Models of Acute Lung Injury. Bio-protocol. 2022;12(16):e4493.
  • 14. Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology--a systematic review. BMC veterinary research. 2013;9:123.
  • 15. Renshaw AA, Gould EW. Measuring errors in surgical pathology in real-life practice: defining what does and does not matter. American journal of clinical pathology. 2007;127(1):144-52.
  • 16. Kaminsky DA, Cockcroft DW, Davis BE. Respiratory System Dynamics. Seminars in respiratory and critical care medicine. 2023;44(5):526-537.
  • 17. Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochemistry and cell biology. 2018;150(6):661-676.
  • 18. McLafferty E, Johnstone C, Hendry C, Farley A. Respiratory system part 1: pulmonary ventilation. Nursing standard. 2013;27(22):40-7.
  • 19. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Veterinary pathology. 2013;50(6):1007-15.
  • 20. Chimenti L, Morales-Quinteros L, Puig F, Camprubi-Rimblas M, Guillamat-Prats R, Gómez MN, Tijero J, Blanch L, Matute- Bello G, Artigas A. Comparison of direct and indirect models of early induced acute lung injury. Intensive Care Med Exp. 2020;8(Suppl 1):62.
  • 21. Rosales C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Frontiers in physiology. 2018;9:113.
  • 22. Malech HL, Deleo FR, Quinn MT. The role of neutrophils in the immune system: an overview. Methods in molecular biology. 2014;1124:3-10.
  • 23. Ohtsuki Y, Fujita J, Yoshinouchi T, Enzan H, Iguchi M, Lee GH, Furihata M. Early Stages of Hyaline Membrane Formation Detected in Alveolar Mouths in Diffuse Alveolar-Damage-Associated Diseases: A Detailed Immunohistochemical Study. International journal of surgical pathology. 2015;23(7):524-30.
  • 24. Albogami SM, Touman AA. Viral pneumonia and pulmonary alveolar proteinosis: the cause and the effect, case report. AME case reports. 2019;3:41.
  • 25. Yousem SA. Respiratory bronchiolitis-associated interstitial lung disease with fibrosis is a lesion distinct from fibrotic nonspecific interstitial pneumonia: a proposal. Modern pathology. 2006;19(11):1474-9.
  • 26. Corrin B, Nicholson AG. Acute alveolar injury and repair. Pathology of the Lungs. 2011;135–53.
  • 27. Li Y, Wang SM, Li X, Lv CJ, Peng LY, Yu XF, Song YJ, Wang CJ. Pterostilbene pre-treatment reduces LPS-induced acute lung injury through activating NR4A1. Pharmaceutical biology. 2022;60(1):394-403.
  • 28. Zhu L, Wei M, Yang N, Li X. Glycyrrhizic acid alleviates the meconium-induced acute lung injury in neonatal rats by inhibiting oxidative stress through mediating the Keap1/Nrf2/HO-1 signal pathway. Bioengineered. 2021;12(1):2616-2626.
  • 29. Qin S, Wang H, Liu G, Mei H, Chen M. miR215p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats. Molecular medicine reports. 2019;20(6):4953-4962.
  • 30. Li R, Ren T, Zeng J. Mitochondrial Coenzyme Q Protects Sepsis- Induced Acute Lung Injury by Activating PI3K/Akt/GSK-3β/ mTOR Pathway in Rats. BioMed research international. 2019 Nov;2019:5240898.
  • 31. Kim SK, Rho SJ, Kim SH, Kim SY, Song SH, Yoo JY, Kim CH, Lee SH. Protective effects of diphenyleneiodonium, an NADPH oxidase inhibitor, on lipopolysaccharide-induced acute lung injury. Clinical and experimental pharmacology & physiology. 2019;46(2):153-162.
  • 32. Cho JY, Kim SJ, Woo CG, Kwon SK, Choe KH, Kim EG, Shin YM. Altered Lung Heat Shock Protein-70 Expression and Severity of Sepsis-Induced Acute Lung Injury in a Chronic Kidney Disease Rat Model. International journal of molecular sciences. 2023;24(6):5641.
  • 33. Yan X, Li Y, Choi YH, Wang C, Piao Y, Ye J, Jiang J, Li L, Xu H, Cui Q, Yan G, Jin M. Protective Effect and Mechanism of Alprostadil in Acute Respiratory Distress Syndrome Induced by Oleic Acid in Rats. Medical science monitor. 2018;24:7186- 7198.
  • 34. Xiong Z, Xu J, Liu X. Oxymatrine exerts a protective effect in myocardial ischemia/reperfusioninduced acute lung injury by inhibiting autophagy in diabetic rats. Mol Molecular medicine reports. 2021;23(3):183.
  • 35. Kong Q, Yuan M, Ming T, Fang Q, Wu X, Song X. Expression and regulation of tumor necrosis factor-α-induced protein-8- like 2 is associated with acute lung injury induced by myocardial ischemia reperfusion in diabetic rats. Microvascular research. 2020;130:104009.
  • 36. Chen S, Wu J, Yang L, Tailaiti T, Zou T, Huan Y, Wang J. Dexmedetomidine Leads to the Mitigation of Myocardial Ischemia/ Reperfusion-Induced Acute Lung Injury in Diabetic Rats Via Modulation of Hypoxia-Inducible Factor-1α. Brazilian journal of cardiovascular surgery. 2022;37(3):370-379.
  • 37. Ma S, Wang X, Yao J, Cao Q, Zuo X. Roles of apoptosis and inflammation in a rat model of acute lung injury induced right ventricular dysfunction. Biomedicine & pharmacotherapy. 2018;108:1105-1114.
  • 38. Liu J, Huang X, Hu S, He H, Meng Z. Dexmedetomidine attenuates lipopolysaccharide induced acute lung injury in rats by inhibition of caveolin-1 downstream signaling. Biomedicine & pharmacotherapy. 2019;118:109314.
  • 39. Zhang Y, He H, Zhang B, Chen Q, Yao S, Gui P. Amelioration of Lipopolysaccharide-Induced Acute Lung Injury in Rats by Na-H Exchanger-1 Inhibitor Amiloride Is Associated with Reversal of ERK Mitogen-Activated Protein Kinase. BioMed research international. 2018;2018:3560234.
  • 40. Jiang Y, Zhang W. LncRNA ZFAS1 plays a role in regulating the inflammatory responses in sepsis-induced acute lung injury via mediating miR-193a-3p. Infection, genetics and evolution. 2021;92:104860.
  • 41. Zheng L, Su J, Zhang Z, Jiang L, Wei J, Xu X, Lv S. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Scientific reports. 2020;10(1):20750.
  • 42. Fu H, Liang X, Tan W, Hu X. Unraveling the protective mechanisms of Chuanfangyihao against acute lung injury: Insights from experimental validation. Experimental and therapeutic medicine. 2023;26(5):535.
  • 43. Zhang FH, Hao H, Liu Y, Fan KL, Dai W, Liu WH, Kong L. Shenmai Injection Alleviates Acute Lung Injury in a Severe Acute Pancreatitis Rat Model via Heme Oxygenase-1 Upregulation. Alternative therapies in health and medicine. 2022;28(2):109- 115.
  • 44. Yang K, Li B, Chen J. Knockdown of phosphoinositide-dependent kinase 1 (PDK1) inhibits fibrosis and inflammation in lipopolysaccharide-induced acute lung injury rat model by attenuating NF-κB/p65 pathway activation. Annals of translational medicine. 2021;9(22):1671.
  • 45. Wang Y, Wang X, Liu W, Zhang L. Role of the Rho/ROCK signaling pathway in the protective effects of fasudil against acute lung injury in septic rats. Molecular medicine reports. 2018;18(5):4486-4498.
  • 46. Li Y, Wu B, Hu C, Hu J, Lian Q, Li J, Ma D. The role of the vagus nerve on dexmedetomidine promoting survival and lung protection in a sepsis model in rats. European journal of pharmacology. 2022;914:174668.
  • 47. Karakişi SO, Hemşinli D, Tümkaya L, Ergene Ş, Mercantepe T, Yılmaz A. Resveratrol against lung injury in an ischemia/reperfusion model of abdominal aortic rupture. Turk gogus kalp damar cerrahisi dergisi. 2021;29(3):330-338.
  • 48. Lin KC, Yeh JN, Chen YL, Chiang JY, Sung PH, Lee FY, Guo J, Yip HK. Xenogeneic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. Cell transplantation. 2020;29:963689720954140.
  • 49. Ren R, Wang X, Xu Z, Jiang W. Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo. Archives of pharmacal research. 2023;46(6):564-572.
  • 50. Yu X, Li C. Protective effects of propofol on experimental neonatal acute lung injury. Molecular medicine reports. 2019 May;19(5):4507-4513.
  • 51. Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis. Experimental lung research. 2021;47(4):183-197.
  • 52. Al-Gabri NA, Qaid MM, El-Shaer NH, Ali MH, Abudabos AM. Thymoquinone ameliorates pulmonary vascular damage induced byEscherichia coli-derived lipopolysaccharide via cytokine downregulation in rats. Environmental science and pollution research international. 2019;26(18):18465-18469.
  • 53. Wu D, Fu X, Zhang Y, Li Q, Ye L, Han S, Zhang M. The protective effects of C16 peptide and angiopoietin-1 compound in lipopolysaccharide- induced acute respiratory distress syndrome. Experimental biology and medicine. 2020;245(18):1683-1696.
  • 54. Adar A, Can EY, Elma Y, Ferah MA, Kececi M, Muderrisoglu H, Akbay E, Akıncı S, Coner A, Haberal C, Cakan F, Onalan O. A new and simple parameter for diagnosis pulmonary edema: Expiratory air humidity. Heart Lung. 2022;52:165-169.
  • 55. Atalay Ş. Karbon tetraklorür uygulanmış sıçanlarda kurkumin’in akciğer üzerindeki koruyucu etkisi (Yüksek Lisans Tezi), Zonguldak, Zonguldak Bülent Ecevit Üniversitesi,2023, 1-83. (https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni. jsp)
There are 55 citations in total.

Details

Primary Language English
Subjects Respiratory Diseases
Journal Section Review
Authors

Osman Cengil 0000-0002-0702-6751

Mete Keçeci 0000-0002-2144-4730

Publication Date August 30, 2024
Submission Date April 24, 2024
Acceptance Date August 11, 2024
Published in Issue Year 2024

Cite

Vancouver Cengil O, Keçeci M. Histological Scoring Systems for the Assessment of the Degree of Lung Injury in Rats. Med J West Black Sea. 2024;8(2):104-12.

Zonguldak Bülent Ecevit Üniversitesi Tıp Fakültesi’nin bilimsel yayım organıdır.

Ulusal ve uluslararası tüm kurum ve kişilere elektronik olarak ücretsiz ulaşmayı hedefleyen hakemli bir dergidir.

Dergi yılda üç kez olmak üzere Nisan, Ağustos ve Aralık aylarında yayımlanır.

Derginin yayım dili Türkçe ve İngilizcedir.