Research Article
BibTex RIS Cite

Tiroid Nodüllerinin Klinik Yönetiminde “TİRONOD Karar-Destek Sistemi”

Year 2025, Volume: 9 Issue: 2, 193 - 204, 31.08.2025
https://doi.org/10.29058/mjwbs.1617806

Abstract

Amaç: Bu makale, tiroid nodüllerinin değerlendirilmesinde hekimlere rehberlik etmek, tanı-tedavi süreçlerini optimize etmek ve klinik
uygulamaya entegrasyonunu sağlamak için oluşturulan TİRONOD-Karar Destek Sistemi'ni incelemek üzere tasarlanmıştır. Sistem, tiroid
nodüllerinin ayırıcı tanısına yenilikçi bir yaklaşım sunarak nihayetinde sağlık hizmetlerinin kalitesini artırmayı amaçlamaktadır.
Gereç ve Yöntemler: TİRONOD karar destek sisteminin mevcut durumu analiz edilecek ve yapay zeka ile makine öğrenmesi tabanlı bir
algoritma kullanılarak klinik süreçlere entegre edilecektir. Sistem; klinik verileri, ultrason görüntüleme bulgularını ve nodül biyopsilerinin
sitoloji sonuçlarını birleştirerek malignite riskini değerlendiren hassas ve öngörücü bir araç olarak tasarlanmıştır.
Bulgular: Sistemin, hasta yönetimi sırasında biyopsi gerekliliğinin belirlenmesine, gereksiz ameliyatların önlenmesine ve maliyet-etkinlik
analizlerinin yapılmasına katkıda bulunması beklenmektedir.
Sonuç: TİRONOD Karar Destek Sistemi, tiroid nodüllerinin ayırıcı tanısında yenilikçi bir yaklaşım sunarak sağlık hizmetlerinin kalitesini
artırmayı amaçlamaktadır. Sistemin hem ulusal hem de uluslararası düzeyde örnek bir model olması beklenmektedir

References

  • 1. Curado MP. Edwards B, Shin, HR, Storm H, Ferlay, J, Heanue M, Boyle P. Cancer Incidence in Five Continents; Iarc Scientific Publications: Lyon, France, 2014; Volume 10.
  • 2. Sorrenti S, Dolcetti V, Radzina M, Bellini MI, Frezza F, Munir K, Grani G, Durante C, D’Andrea V, David E, Calò PG, Lori E, Cantisani V. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing? Cancers (Basel). 2022;14(14):3357. doi: 10.3390/cancers14143357. PMID: 35884418; PMCID: PMC9315681.
  • 3. Fresilli D, Grani G, De Pascali ML, Alagna G, Tassone E, Ramundo V, Ascoli V, Bosco D, Biffoni M, Bononi M, D’Andrea V, Frattaroli F, Giacomelli L, Solskaya Y, Polti G, Pacini P, Guiban O, Gallo Curcio R, Caratozzolo M, Cantisani V. Computer-aided diagnostic system for thyroid nodule sonographic evaluation outperforms the specificity of less experienced examiners. J Ultrasound. 2020;23(2):169-174. doi: 10.1007/s40477- 020-00453-y. Epub 2020 Apr 3. PMID: 32246401; PMCID: PMC7242558.
  • 4. Grani G, Zatelli MC, Alfò M, Montesano T, Torlontano M, Morelli S, Deandrea M, Antonelli A, Francese C, Ceresini G, Orlandi F, Maniglia CA, Bruno R, Monti S, Santaguida MG, Repaci A, Tallini G, Fugazzola L, Monzani F, Giubbini R, Rossetto R, Mian C, Crescenzi A, Tumino D, Pagano L, Pezzullo L, Lombardi CP, Arvat E, Petrone L, Castagna MG, Spiazzi G, Salvatore D, Meringolo D, Solaroli E, Monari F, Magri F, Triggiani V, Castello R, Piazza C, Rossi R, Ferraro Petrillo U, Filetti S, Durante C. Real-World Performance of the American Thyroid Association Risk Estimates in Predicting 1-Year Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study of 2000 Patients. Thyroid. 2021;31(2):264-271. doi: 10.1089/ thy.2020.0272. Epub 2020 Jul 1. PMID: 32475305.
  • 5. Celletti I, Fresilli D, De Vito C, Bononi M, Cardaccio S, Cozzolino A, Durante C, Grani G, Grimaldi G, Isidori AM, Catalano C, Cantisani V. TIRADS, SRE and SWE in INDETERMINATE thyroid nodule characterization: Which has better diagnostic performance? Radiol Med. 2021;126(9):1189-1200. doi: 10.1007/ s11547-021-01349-5. Epub 2021 Jun 15. PMID: 34129178; PMCID: PMC8370962.
  • 6. Garber JR, Papini E, Frasoldati A, Lupo MA, Harrell RM, Parangi S, Patkar V, Baloch ZW, Pessah-Pollack R, Hegedus L, Crescenzi A, Lubitz CC, Paschke R, Randolph GW, Guglielmi R, Lombardi CP, Gharib H. American Association of Clinical Endocrinology And Associazione Medici Endocrinologi Thyroid Nodule Algorithmic Tool. Endocr Pract. 2021;27(7):649-660. doi: 10.1016/j.eprac.2021.04.007. Epub 2021 Jun 3.
  • 7. Triggiani V, Lisco G, Renzulli G, Frasoldati A, Guglielmi R, Garber J, Papini E. The TNAPP web-based algorithm improves thyroid nodule management in clinical practice: A retrospective validation study. Front Endocrinol (Lausanne). 2023;13:1080159. doi: 10.3389/fendo.2022.1080159. PMID: 36778596; PMCID: PMC9911894.
  • 8. Kim DH, Kim SW, Basurrah MA, Lee J, Hwang SH. Diagnostic Performance of Six Ultrasound Risk Stratification Systems for Thyroid Nodules: A Systematic Review and Network Meta- Analysis. AJR Am J Roentgenol. 2023;220(6):791-803. doi: 10.2214/AJR.22.28556. Epub 2023 Feb 8. PMID: 36752367.
  • 9. Wildman-Tobriner B, Taghi-Zadeh E, Mazurowski MA. Artificial Intelligence (AI) Tools for Thyroid Nodules on Ultrasound, From the AJR Special Series on AI Applications. AJR Am J Roentgenol. 2022;219(4):1-8. doi: 10.2214/AJR.22.27430. Epub 2022 Apr 6. PMID: 35383487.
  • 10. Aversano L, Bernardi ML, Cimitile M, Maiellaro A, Pecori R. A systematic review on artificial intelligence techniques for detecting thyroid diseases. PeerJ Comput Sci. 2023 Jun 6;9:e1394. doi: 10.7717/peerj-cs.1394. PMID: 37346658; PMCID: PMC10280452.
  • 11. Taha A, Saad B, Taha-Mehlitz S, Ochs V, El-Awar J, Mourad MM, Neumann K, Glaser C, Rosenberg R, Cattin PC. Analysis of artificial intelligence in thyroid diagnostics and surgery: A scoping review. Am J Surg. 2024 Mar;229:57-64. doi: 10.1016/j. amjsurg.2023.11.019. Epub 2023 Nov 18. PMID: 38036334.
  • 12. Giovanella L, Campennì A, Tuncel M, Petranović Ovčariček P. Integrated Diagnostics of Thyroid Nodules. Cancers (Basel). 2024 Jan 11;16(2):311. doi: 10.3390/cancers16020311. PMID: 38254799; PMCID: PMC10814240.
  • 13. Thomas J, Ledger GA, Mamillapalli CK. Use of artificial intelligence and machine learning for estimating malignancy risk of thyroid nodules. Curr Opin Endocrinol Diabetes Obes. 2020 Oct;27(5):345-350. doi: 10.1097/MED.0000000000000557. PMID: 32740044.
  • 14. Ludwig M, Ludwig B, Mikuła A, Biernat S, Rudnicki J, Kaliszewski K. The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update. Cancers (Basel). 2023 Jan 24;15(3):708. doi: 10.3390/cancers15030708. PMID: 36765671; PMCID: PMC9913834.
  • 15. Potipimpanon P, Charakorn N, Hirunwiwatkul P. A comparison of artificial intelligence versus radiologists in the diagnosis of thyroid nodules using ultrasonography: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2022 Nov;279(11):5363-5373. doi: 10.1007/s00405-022-07436-1. Epub 2022 Jun 29. PMID: 35767056.
  • 16. Wang B, Wan Z, Zhang M, Gong F, Zhang L, Luo Y, Yao J, Li C, Tian W. Diagnostic value of a dynamic artificial intelligence ultrasonic intelligent auxiliary diagnosis system for benign and malignant thyroid nodules in patients with Hashimoto thyroiditis. Quant Imaging Med Surg. 2023 Jun 1;13(6):3618-3629. doi: 10.21037/qims-22-889. Epub 2023 Apr 4. PMID: 37284122; PMCID: PMC10240020.
  • 17. Wang C, Yu P, Zhang H, Han X, Song Z, Zheng G, Wang G, Zheng H, Mao N, Song X. Artificial intelligence-based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT. Eur Radiol. 2023 Oct;33(10):6828-6840. doi: 10.1007/ s00330-023-09700-2. Epub 2023 May 13. PMID: 37178202.
  • 18. Tessler FN, Thomas J. Artificial Intelligence for Evaluation of Thyroid Nodules: A Primer. Thyroid. 2023 Feb;33(2):150- 158. doi: 10.1089/thy.2022.0560. Epub 2023 Jan 25. PMID: 36424829.
  • 19. Wang Y, Xu L, Lu W, Kong X, Shi K, Wang L, Kong D. Clinical evaluation of malignancy diagnosis of rare thyroid carcinomas by an artificial intelligent automatic diagnosis system. Endocrine. 2023 Apr;80(1):93-99. doi: 10.1007/s12020-022-03269- 4. Epub 2022 Dec 3. PMID: 36462146.
  • 20. Cao C-L, Li Q-L, Tong J, Shi L-N, Li W-X, Xu Y, Cheng J, Du T-T, Li J and Cui X-W. Artificial intelligence in thyroid ultrasound. Front. Oncol. 2023;13:1060702. doi: 10.3389/ fonc.2023.1060702
  • 21. Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [CrossRef]
  • 22. Endokrinoloji ve Metabolizma Hastalıkları Bilim Dalı. Zonguldak Bülent Ecevit Üniversitesi, TIRONOD KARAR DESTEK SİSTEMİ. (Erişim Tarihi:08.12.2024 Link: http://www.tironod. com/)
  • 23. Robin N. Learning PHP, MySQL & JavaScript: With JQuery, CSS & HTML5. Fifth edition. Sebastopol, CA, O’Reilly Media, Inc, 2018.
  • 24. Spurlock J. Responsive Web Development, Publisher, “O’Reilly Media, Inc.”, 2013 ; ISBN, 1449344593, 9781449344597.
  • 25. Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, Cronan JJ, Beland MD, Desser TS, Frates MC, Hammers LW, Hamper UM, Langer JE, Reading CC, Scoutt LM, Stavros AT. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol. 2017 May;14(5):587-595. doi: 10.1016/j. jacr.2017.01.046. Epub 2017 Apr 2. PMID: 28372962.
  • 26. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Tyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Tyroid Nodules in Adults: Te EU-TIRADS. European thyroid journal. 2017; 6(5):225-37
  • 27. Remonti LR, Kramer CK, Leitao CB, Pinto LC, Gross JL. Tyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Tyroid. 2015; 25(5):538-50
  • 28. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedüs L, Paschke R, Valcavi R, Vitti P; AACE/ACE/AME Task Force on Thyroid Nodules. Amerıcan Assocıatıon Of Clınıcal Endocrınologısts, Amerıcan College Of Endocrınology, And Assocıazıone Medıcı Endocrınologı Medıcal Guıdelınes For Clınıcal Practıce For The Dıagnosıs And Management Of Thyroıd Nodules--2016 Update. Endocr Pract. 2016;22(5):622-39. doi: 10.4158/EP161208.GL. PMID: 27167915.
  • 29. Burgos N, Ospina NS, Sipos JA. Te Future of Tyroid Nodule Risk Stratification. Endocrinology and metabolism clinics of North America. 2022; 51(2):305-21.
  • 30. Canpolat AG, Şahin M. Tiroid nodülleri. In: Tiroid Çalışma Grubu. Tiroid Hastalıkları Tanı Ve Tedavi Kılavuzu © Türkiye Endokrinoloji ve Metabolizma Derneği • 2023, ISBN: 978-605- 66410-3-9. 7. Baskı: Mayıs 2023 (Çevrimiçi yayın), BAYT Bilimsel Araştırmalar Basın Yayın ve Tanıtım Ltd. Şti.Ankara, 2023; 123-130.
  • 31. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid. 2023 Jul 8; doi: 10.1089/ thy.2023.0141. doi: 10.1089/thy.2023.0141.

“TIRONOD Decision-Support System” in the Clinical Management of Thyroid Nodules

Year 2025, Volume: 9 Issue: 2, 193 - 204, 31.08.2025
https://doi.org/10.29058/mjwbs.1617806

Abstract

Aim: This article was designed to examine the TIRONOD-Decision Support System, which was created to guide physicians in the evaluation
of thyroid nodules, optimize diagnosis-treatment processes, and ensure its integration into clinical practice. The system ultimately aims to
increase the quality of healthcare services by offering an innovative approach to the differential diagnosis of thyroid nodules.
Material and Methods: The current status of the TIRONOD decision support system will be analyzed and integrated into clinical processes
with an artificial intelligence and machine learning-based algorithm. The system is designed as a sensitive and predictive tool for malignancy
risk assessment by combining clinical data, ultrasound imaging findings, and cytology results of nodule biopsies.
Results: The system is expected to contribute to determining the necessity of biopsies, preventing unnecessary surgeries, and conducting
cost-effectiveness analyses during patient management
Conclusion: The TIRONOD Decision Support System aims to increase the quality of healthcare services by offering an innovative approach
in the differential diagnosis of thyroid nodules. It is expected to be an exemplary model at both national and international levels.

References

  • 1. Curado MP. Edwards B, Shin, HR, Storm H, Ferlay, J, Heanue M, Boyle P. Cancer Incidence in Five Continents; Iarc Scientific Publications: Lyon, France, 2014; Volume 10.
  • 2. Sorrenti S, Dolcetti V, Radzina M, Bellini MI, Frezza F, Munir K, Grani G, Durante C, D’Andrea V, David E, Calò PG, Lori E, Cantisani V. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing? Cancers (Basel). 2022;14(14):3357. doi: 10.3390/cancers14143357. PMID: 35884418; PMCID: PMC9315681.
  • 3. Fresilli D, Grani G, De Pascali ML, Alagna G, Tassone E, Ramundo V, Ascoli V, Bosco D, Biffoni M, Bononi M, D’Andrea V, Frattaroli F, Giacomelli L, Solskaya Y, Polti G, Pacini P, Guiban O, Gallo Curcio R, Caratozzolo M, Cantisani V. Computer-aided diagnostic system for thyroid nodule sonographic evaluation outperforms the specificity of less experienced examiners. J Ultrasound. 2020;23(2):169-174. doi: 10.1007/s40477- 020-00453-y. Epub 2020 Apr 3. PMID: 32246401; PMCID: PMC7242558.
  • 4. Grani G, Zatelli MC, Alfò M, Montesano T, Torlontano M, Morelli S, Deandrea M, Antonelli A, Francese C, Ceresini G, Orlandi F, Maniglia CA, Bruno R, Monti S, Santaguida MG, Repaci A, Tallini G, Fugazzola L, Monzani F, Giubbini R, Rossetto R, Mian C, Crescenzi A, Tumino D, Pagano L, Pezzullo L, Lombardi CP, Arvat E, Petrone L, Castagna MG, Spiazzi G, Salvatore D, Meringolo D, Solaroli E, Monari F, Magri F, Triggiani V, Castello R, Piazza C, Rossi R, Ferraro Petrillo U, Filetti S, Durante C. Real-World Performance of the American Thyroid Association Risk Estimates in Predicting 1-Year Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study of 2000 Patients. Thyroid. 2021;31(2):264-271. doi: 10.1089/ thy.2020.0272. Epub 2020 Jul 1. PMID: 32475305.
  • 5. Celletti I, Fresilli D, De Vito C, Bononi M, Cardaccio S, Cozzolino A, Durante C, Grani G, Grimaldi G, Isidori AM, Catalano C, Cantisani V. TIRADS, SRE and SWE in INDETERMINATE thyroid nodule characterization: Which has better diagnostic performance? Radiol Med. 2021;126(9):1189-1200. doi: 10.1007/ s11547-021-01349-5. Epub 2021 Jun 15. PMID: 34129178; PMCID: PMC8370962.
  • 6. Garber JR, Papini E, Frasoldati A, Lupo MA, Harrell RM, Parangi S, Patkar V, Baloch ZW, Pessah-Pollack R, Hegedus L, Crescenzi A, Lubitz CC, Paschke R, Randolph GW, Guglielmi R, Lombardi CP, Gharib H. American Association of Clinical Endocrinology And Associazione Medici Endocrinologi Thyroid Nodule Algorithmic Tool. Endocr Pract. 2021;27(7):649-660. doi: 10.1016/j.eprac.2021.04.007. Epub 2021 Jun 3.
  • 7. Triggiani V, Lisco G, Renzulli G, Frasoldati A, Guglielmi R, Garber J, Papini E. The TNAPP web-based algorithm improves thyroid nodule management in clinical practice: A retrospective validation study. Front Endocrinol (Lausanne). 2023;13:1080159. doi: 10.3389/fendo.2022.1080159. PMID: 36778596; PMCID: PMC9911894.
  • 8. Kim DH, Kim SW, Basurrah MA, Lee J, Hwang SH. Diagnostic Performance of Six Ultrasound Risk Stratification Systems for Thyroid Nodules: A Systematic Review and Network Meta- Analysis. AJR Am J Roentgenol. 2023;220(6):791-803. doi: 10.2214/AJR.22.28556. Epub 2023 Feb 8. PMID: 36752367.
  • 9. Wildman-Tobriner B, Taghi-Zadeh E, Mazurowski MA. Artificial Intelligence (AI) Tools for Thyroid Nodules on Ultrasound, From the AJR Special Series on AI Applications. AJR Am J Roentgenol. 2022;219(4):1-8. doi: 10.2214/AJR.22.27430. Epub 2022 Apr 6. PMID: 35383487.
  • 10. Aversano L, Bernardi ML, Cimitile M, Maiellaro A, Pecori R. A systematic review on artificial intelligence techniques for detecting thyroid diseases. PeerJ Comput Sci. 2023 Jun 6;9:e1394. doi: 10.7717/peerj-cs.1394. PMID: 37346658; PMCID: PMC10280452.
  • 11. Taha A, Saad B, Taha-Mehlitz S, Ochs V, El-Awar J, Mourad MM, Neumann K, Glaser C, Rosenberg R, Cattin PC. Analysis of artificial intelligence in thyroid diagnostics and surgery: A scoping review. Am J Surg. 2024 Mar;229:57-64. doi: 10.1016/j. amjsurg.2023.11.019. Epub 2023 Nov 18. PMID: 38036334.
  • 12. Giovanella L, Campennì A, Tuncel M, Petranović Ovčariček P. Integrated Diagnostics of Thyroid Nodules. Cancers (Basel). 2024 Jan 11;16(2):311. doi: 10.3390/cancers16020311. PMID: 38254799; PMCID: PMC10814240.
  • 13. Thomas J, Ledger GA, Mamillapalli CK. Use of artificial intelligence and machine learning for estimating malignancy risk of thyroid nodules. Curr Opin Endocrinol Diabetes Obes. 2020 Oct;27(5):345-350. doi: 10.1097/MED.0000000000000557. PMID: 32740044.
  • 14. Ludwig M, Ludwig B, Mikuła A, Biernat S, Rudnicki J, Kaliszewski K. The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update. Cancers (Basel). 2023 Jan 24;15(3):708. doi: 10.3390/cancers15030708. PMID: 36765671; PMCID: PMC9913834.
  • 15. Potipimpanon P, Charakorn N, Hirunwiwatkul P. A comparison of artificial intelligence versus radiologists in the diagnosis of thyroid nodules using ultrasonography: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2022 Nov;279(11):5363-5373. doi: 10.1007/s00405-022-07436-1. Epub 2022 Jun 29. PMID: 35767056.
  • 16. Wang B, Wan Z, Zhang M, Gong F, Zhang L, Luo Y, Yao J, Li C, Tian W. Diagnostic value of a dynamic artificial intelligence ultrasonic intelligent auxiliary diagnosis system for benign and malignant thyroid nodules in patients with Hashimoto thyroiditis. Quant Imaging Med Surg. 2023 Jun 1;13(6):3618-3629. doi: 10.21037/qims-22-889. Epub 2023 Apr 4. PMID: 37284122; PMCID: PMC10240020.
  • 17. Wang C, Yu P, Zhang H, Han X, Song Z, Zheng G, Wang G, Zheng H, Mao N, Song X. Artificial intelligence-based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT. Eur Radiol. 2023 Oct;33(10):6828-6840. doi: 10.1007/ s00330-023-09700-2. Epub 2023 May 13. PMID: 37178202.
  • 18. Tessler FN, Thomas J. Artificial Intelligence for Evaluation of Thyroid Nodules: A Primer. Thyroid. 2023 Feb;33(2):150- 158. doi: 10.1089/thy.2022.0560. Epub 2023 Jan 25. PMID: 36424829.
  • 19. Wang Y, Xu L, Lu W, Kong X, Shi K, Wang L, Kong D. Clinical evaluation of malignancy diagnosis of rare thyroid carcinomas by an artificial intelligent automatic diagnosis system. Endocrine. 2023 Apr;80(1):93-99. doi: 10.1007/s12020-022-03269- 4. Epub 2022 Dec 3. PMID: 36462146.
  • 20. Cao C-L, Li Q-L, Tong J, Shi L-N, Li W-X, Xu Y, Cheng J, Du T-T, Li J and Cui X-W. Artificial intelligence in thyroid ultrasound. Front. Oncol. 2023;13:1060702. doi: 10.3389/ fonc.2023.1060702
  • 21. Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [CrossRef]
  • 22. Endokrinoloji ve Metabolizma Hastalıkları Bilim Dalı. Zonguldak Bülent Ecevit Üniversitesi, TIRONOD KARAR DESTEK SİSTEMİ. (Erişim Tarihi:08.12.2024 Link: http://www.tironod. com/)
  • 23. Robin N. Learning PHP, MySQL & JavaScript: With JQuery, CSS & HTML5. Fifth edition. Sebastopol, CA, O’Reilly Media, Inc, 2018.
  • 24. Spurlock J. Responsive Web Development, Publisher, “O’Reilly Media, Inc.”, 2013 ; ISBN, 1449344593, 9781449344597.
  • 25. Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, Cronan JJ, Beland MD, Desser TS, Frates MC, Hammers LW, Hamper UM, Langer JE, Reading CC, Scoutt LM, Stavros AT. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol. 2017 May;14(5):587-595. doi: 10.1016/j. jacr.2017.01.046. Epub 2017 Apr 2. PMID: 28372962.
  • 26. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Tyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Tyroid Nodules in Adults: Te EU-TIRADS. European thyroid journal. 2017; 6(5):225-37
  • 27. Remonti LR, Kramer CK, Leitao CB, Pinto LC, Gross JL. Tyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Tyroid. 2015; 25(5):538-50
  • 28. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedüs L, Paschke R, Valcavi R, Vitti P; AACE/ACE/AME Task Force on Thyroid Nodules. Amerıcan Assocıatıon Of Clınıcal Endocrınologısts, Amerıcan College Of Endocrınology, And Assocıazıone Medıcı Endocrınologı Medıcal Guıdelınes For Clınıcal Practıce For The Dıagnosıs And Management Of Thyroıd Nodules--2016 Update. Endocr Pract. 2016;22(5):622-39. doi: 10.4158/EP161208.GL. PMID: 27167915.
  • 29. Burgos N, Ospina NS, Sipos JA. Te Future of Tyroid Nodule Risk Stratification. Endocrinology and metabolism clinics of North America. 2022; 51(2):305-21.
  • 30. Canpolat AG, Şahin M. Tiroid nodülleri. In: Tiroid Çalışma Grubu. Tiroid Hastalıkları Tanı Ve Tedavi Kılavuzu © Türkiye Endokrinoloji ve Metabolizma Derneği • 2023, ISBN: 978-605- 66410-3-9. 7. Baskı: Mayıs 2023 (Çevrimiçi yayın), BAYT Bilimsel Araştırmalar Basın Yayın ve Tanıtım Ltd. Şti.Ankara, 2023; 123-130.
  • 31. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid. 2023 Jul 8; doi: 10.1089/ thy.2023.0141. doi: 10.1089/thy.2023.0141.
There are 31 citations in total.

Details

Primary Language English
Subjects Endocrinology
Journal Section Research Article
Authors

İsmail Terzi 0000-0002-9237-0732

Taner Bayraktaroğlu 0000-0003-3159-6663

Erkan Çetiner 0000-0002-4758-9153

Publication Date August 31, 2025
Submission Date January 15, 2025
Acceptance Date May 2, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

Vancouver Terzi İ, Bayraktaroğlu T, Çetiner E. “TIRONOD Decision-Support System” in the Clinical Management of Thyroid Nodules. Med J West Black Sea. 2025;9(2):193-204.

Medical Journal of Western Black Sea is a scientific publication of Zonguldak Bulent Ecevit University Faculty of Medicine.

This is a refereed journal, which aims at achieving free knowledge to the national and international organizations and individuals related to medical sciences in publishedand electronic forms.

This journal is published three annually in April, August and December.
The publication language of the journal is Turkish and English.