Determination of the efficacies of different phosphites in the management of tomato bacterial speck disease caused by Pseudomonas syringae pv. tomato
Year 2023,
, 25 - 37, 07.04.2023
Sa Ad Mohamed Haji Nour
,
Sümer Horuz
Abstract
This study tested the efficacy of five different phosphites (calcium, copper, magnesium, potassium and zinc/manganese phosphites) and a fungicide Fosetyl-Aluminum to inhibit bacterial speck disease severity caused by Pseudomonas syringae pv. tomato (Pst) on tomato leaves. The phosphites were applied at the recommended doses to the Pst inoculated plants in pots by foliar spraying at one-week intervals for a total of 4 weeks. The plants were kept in a controlled greenhouse under relative humidity (%75-90) and temperature (22-24 °C) until disease symptoms appeared in the control plants. Phosphites and Fosetyl-Aluminum inhibited the Pst symptoms on tomato leaves by 42.1-75.0% in the first and 22.8-90.3% in the second experiments. This study demonstrated the direct influence of phosphites on tomato bacterial speck. The study suggested that phosphites can be an effective alternative for the chemical control of tomato bacterial disease. The bacterial agent, Pst, causes bacterial speck disease in tomatoes. The initial symptoms of the disease are water-soaked, small dark brown spots surrounded by a yellow halo on tomato leaves. Since the pathogen is seed-borne, control of the disease is difficult.
Supporting Institution
Erciyes University Scientific Research Projects Coordination Unit
Project Number
Grant no: FYL-2022-11632
Thanks
This study is a Master’s thesis and granted by Erciyes University Scientific Research Projects Coordination Unit (Grant no: FYL-2022-11632).
References
- Anonymous, (2019) “A Cultural History of Tomatoes,” https://www.babbel.com/en/magazine/tomato-history (Accessed March, 10, 2022).
- Anonymous,(2017) “Small, brown/black spots on a green tomato characteristic of bacterial speck. (Photo courtesy of Bacterial Speck of Tomato,” Accessed: Mar. 31, 2022. [Online]. Available: https://pddc.wisc.edu.
- Anonymous, (2021) “Bacterial Speck / Tomato / Agriculture: Pest Management Guidelines / UC Statewide IPM Program (UC IPM).” https://www2.ipm.ucanr.edu/agriculture/tomato/Bacterial-Speck/ (Accessed March, 31, 2022).
- Achary, V.M.M.; Ram, B.; Manna, M.; Datta, D.; Bhatt, A.; Reddy, M.K.; Agrawal, P.K. Phosphite: A novel P fertilizer for weed management and pathogen control. Plant Biotechnol. J. 2017, 15, 1493–1508.
- Bahadou, S. A., Ouijja, A., Boukhari, M. A., Tahiri, A., 2017. Development of field strategies for fire blight control integrating biocontrol agents and plant defense activators in Morocco. Journal of plant pathology, 99:51-58s.
- Costa, L. C., Debona, D., Silveira, P. R., Cacique, I. S., Aucique-Pérez, C. E., Resende, R. S., Oliveira, J. R., Rodrigues F. Á. (2020) ‘Phosphites of manganese and zinc potentiate the resistance of common bean against infection by Xanthomonas axonopodis pv. phaseoli’, Journal of Phytopathology, 168(11–12), pp. 641–651. doi: 10.1111/jph.12944.
- Don Huber, Volker Römheld and Markus Weinmann ,(2012). ''Relationship between Nutrition, Plant Diseases and Pests'' Marschner's Mineral Nutrition of Higher Plants(third edition) , pp.483–643.doi:10.1016/B978-0-12-384905-2.00028-5.
- Dalio RJD, Fleischmann F, Humez M, Osswald W (2014) Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS One 9(1):e87860. https://doi.org/10.1371/journal.pone.0087860
da Silva Junior, M. B. de Resende M. L. V., Pozza E. A., Resende A. R., Vasconcelos V. A.
- Janssen, D. García, C., Ruiz, L., De Cara-García, M., Simon, A., Martinez, A. (2018) ‘Disease resistance in tomato crops produced in Spain’, Acta Horticulturae, 1207, pp. 63–68. doi: 10.17660/ACTAHORTIC.2018.1207.8.
- Elsharkawy, M., Derbalah, A., Hamza, A., and El-Shaer A., (2020) “Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt,” Environ. Sci. Pollut. Res., vol. 27, no. 16, pp. 19049–19057, , doi: 10.1007/S11356-018-3806-0/TABLES/4.
- Erba, D., Casiraghi, M. C., Ribas-A. A., Cáceres, R., Marfà, O.,Castellari, M.. (2013) ‘Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques’, Journal of Food Composition and Analysis, 31(2), pp. 245–251. doi: 10.1016/J.JFCA.2013.05.014. Faostat (2021). Available at: https://www.fao.org/faostat/en/#home. Accessed date: June, 8, 2022.
- Fagundes-Nacarath, I. R. F., Debona, D., Brás, V. V., Silveira, P. R. and Rodrigues, F. A. (2018). “Phosphites attenuate Sclerotinia sclerotioruminduced physiological impairments in common bean,’’.Acta Physiologia Plantarum, 40, 198. https://doi.org/10.1007/s11738-018-2776-7.
- Felipini, R. Boneti J. I., Cezar A., Neto R., Veleirinho B. (2016) ‘Apple scab control and activation of plant defence responses using potassium phosphite and chitosan’, European Journal of Plant Pathology, 145. 929–939. doi: 10.1007/s10658-016-0881-2.
- Figueira, E. P. P. Felipini R., Boneti, J. I., Cezar, A., Neto, R., Veleirinho B. (2020) ‘Histochemical changes induced by Trichoderma spp. and potassium phosphite in common bean (Phaseolus vulgaris) in response to the attack by Colletotrichum lindemuthianum’, Semina: Ciências Agrárias, 41(3), pp. 811–828. doi: 10.5433/1679-0359.2020v41n3p811
- Guest, D.I., Grant, B.R., 1991. The complex action of phosphonates as antifungal agents. Biological Reviews. 66, pp. 159-187. https://doi.org/10.1111/j.1469-185X.1991.tb01139.x
- Gadaga SJC, Abreu MS, Resende MLV, Ribeiro Junior PM (2017). Phosphites for control of anthracnose in common bean. Fitopatologia: Pesq Agropec Bras 52(1):36–44. https://doi.org/10.1590/s0100204x2017000100005
- Hardy, G.S.J. Barrett, S. Shearer, B. 2001. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30, pp. 133–139. https://doi.org/10.1071/AP01012
- Horuz ,S. Ocal, A. Aysan.Y. (2018) “ Efficacy of hot water and chemical seed treatment on bacterial speck of tomatoin turkey,” Fresenius Environmental Bulletin, 27 , pp.3185-3190.
- Jones, J. Sally, A.M., Thomas, A.Z., Timur, M. M. (2014) ‘Bacterial speck’, Compendium of tomato diseases and pests. 2nd edn. APS press, pp. 54–55.
- Lovatt, C. (1990) ‘Foliar phosphorus fertilization of citrus by foliar application of phosphite’, Summery of Citrus Research, pp. 25-26. doi:10026021719/.
- Liljeroth, E. Lankinen Å., Wiik Lars., Burra D., D. Alexandersson E., Andreasson E. (2016) ‘Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials’, Crop Protection, 86, pp. 42–55. doi: 10.1016/J.CROPRO.2016.04.003.
- Lobato, M.; Machinandiarena, M.; Tambascio, C.; Dosio, G.; Caldiz, D.; Daleo, G.; Andreu, A.; Olivieri, F.(2011). Effect of foliar applications of phosphite on post-harvest potato tubers. European Journal of Plant Pathology, 130:155–163. DOI 10.1007/s10658-011-9741-2
- Li, Y., Yang, D. and Cui, J. (2017) ‘Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against: Pseudomonas syringae pv. tomato’, RSC Advances, 7(62), pp. 38853–38860. doi: 10.1039/c7ra05520j.
- McDonald, A.E.; Grant, B.R.; Plaxton, W.C. 2001. Phosphite (phosphorous acid): Its relevance in the environment and agriculture and influence on plant phosphate starvation response. Journal of Plant Nutrition, 24, pp. 1505–1519. https://doi.org/10.1081/PLN-100106017
- Martínez, S. (2016). Effects of combined application of potassium phosphite and fungicide on stem and sheath disease control, yield, and quality of rice. Crop Protection, 89, 259–264. doi:10.1016/j.cropro.2016.08.002
- Mehta, S. Kumar, A., Achary ,V. M. M. Ganesan, P., Patel, A., Singh A., Rathi, N., Das, T. K., Lal, S. K., Reddy, M. K. (2022) ‘Antifungal and defense elicitor activity of Potassium phosphite against fungal blast disease on ptxD-OE transgenic indica rice and its acceptor parent’, Pesticide Biochemistry and Physiology, 182, pp. 105026. doi: 10.1016/J.PESTBP.2021.105026.
- Mensi I, Jabnoun-Khiareddine H, Zarrougui NE, Ben Zahra H, Cesbron S, Jacques MA, Daami-Remadi M, 2018. First report of tomato bacterial speck caused by Pseudomonas syringae pv. tomato in Tunisia. New Disease Reports 38, 21. http://dx.doi.org/10.5197/j.2044-0588.2018.038.021
- Najdabbasi N., Mirmajlessi S. Mahyar D., Kevin, Mänd M., Landschoot S., Haesaert G., (2022). ‘Combination of potassium phosphite and reduced doses of fungicides encourages protection against Phytophthora infestans in potatoes’, Agriculture, 12(2), 189. doi: 10.3390/agriculture12020189.
- Preston, G. M. (2000) ‘Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time’, Molecular Plant Pathology, 1(5), pp. 263–275. doi: 10.1046/J.1364-3703.2000.00036.X.
- Popović, T., Ivanović, Ž., & Ignjatov, M. (2015). First Report of Pseudomonas viridiflava Causing Pith Necrosis of Tomato (Solanum lycopersicum) in Serbia. Plant Disease, 99(7), 1033–1033. doi:10.1094/pdis-01-15-0052-pdn
- Reuveni, M., Sheglov, D. and Cohen, Y. (2003) ‘Control of moldy-core decay in apple fruits by β-aminobutyric acids and potassium phosphites’, Plant Disease, 87(8), pp. 933–936. doi: 10.1094/PDIS.2003.87.8.933.
- Stamova, L. (2009) ‘Resistance to Pseudomonas syringae pv. tomato race 1’, Acta Horticulturae, 808, pp. 219–222. doi: 10.17660/ACTAHORTIC.2009.808.33.
- Silva, O. C., Santos, H. A.A., Dalla Pria, M.,May-De Mio., and L. L. (2011)‘Potassium phosphite for control of downy mildew of soybean’, Crop Protection, 30(6), pp. 598–604. doi: 10.1016/J.CROPRO.2011.02.015.
- Shenge, S., Mabagala, D., Mortensen, R. C. N., Wydra K. (2008) ‘Molecular characterization of Pseudomonas syringae pv. tomato isolates from Tanzania’, Phytoparasitica, 36(4), pp. 338–351.
Pseudomonas syringae pv. tomato’nun neden olduğu domates bakteriyel benek hastalığının yönetiminde farklı fosfitlerin etkinliklerinin belirlenmesi
Year 2023,
, 25 - 37, 07.04.2023
Sa Ad Mohamed Haji Nour
,
Sümer Horuz
Abstract
Bu çalışmada, beş farklı fosfit (kalsiyum, bakır, magnezyum, potasyum ve çinko/mangan fosfit) ve fungisit Fosetyl-Aluminyum’un Pseudomonas syringae pv. tomato (Pst)’nun neden olduğu bakteriyel benek hastalığının domates yapraklarındaki gelişimini baskılama durumları test edilmiştir. Fosfitler saksıda bulunan Pst inokule edilmiş domates bitkilerine önerilen dozda 4 hafta boyunca haftada bir kez yapraktan püskürtme şeklinde uygulanmıştır. Bitkiler yüksek nem (%75-90) ve sıcaklıkta (22-24 °C) kontrollü serada kontrol bitkilerinde hastalık belirtileri gözleninceye kadar bekletilmiştir. Fosfitler ve Fosetyl-Aluminyum domates yapraklarında Pst belirtilerini birinci denemede %42.1-75.0, ikinci denemede ise %22.8-90.3 oranında azaltmıştır. Bu çalışma fosfitlerin domates bakteriyel benek hastalığının engellenmesi üzerine olan direk etkiyi ortaya koymuştur. Çalışma sonucunda fosfitlerin hastalığın mücadelesinde kimyasallara alternatif uygulama olarak kullanılabileceği vurgulanmıştır. Bakterial etmen, Pst, domateslerde bakteriyel benek hastalığına yol açar. Hastalığın yaprak belirtileri önceleri su emmiş, daha sonra etrafı sarı bir hale ile çevrili küçük koyu kahverengi lekeler şeklindedir. Hastalık etmeninin tohum kaynaklı olmasından dolayı hastalıkla mücadele oldukça zordur.
Project Number
Grant no: FYL-2022-11632
References
- Anonymous, (2019) “A Cultural History of Tomatoes,” https://www.babbel.com/en/magazine/tomato-history (Accessed March, 10, 2022).
- Anonymous,(2017) “Small, brown/black spots on a green tomato characteristic of bacterial speck. (Photo courtesy of Bacterial Speck of Tomato,” Accessed: Mar. 31, 2022. [Online]. Available: https://pddc.wisc.edu.
- Anonymous, (2021) “Bacterial Speck / Tomato / Agriculture: Pest Management Guidelines / UC Statewide IPM Program (UC IPM).” https://www2.ipm.ucanr.edu/agriculture/tomato/Bacterial-Speck/ (Accessed March, 31, 2022).
- Achary, V.M.M.; Ram, B.; Manna, M.; Datta, D.; Bhatt, A.; Reddy, M.K.; Agrawal, P.K. Phosphite: A novel P fertilizer for weed management and pathogen control. Plant Biotechnol. J. 2017, 15, 1493–1508.
- Bahadou, S. A., Ouijja, A., Boukhari, M. A., Tahiri, A., 2017. Development of field strategies for fire blight control integrating biocontrol agents and plant defense activators in Morocco. Journal of plant pathology, 99:51-58s.
- Costa, L. C., Debona, D., Silveira, P. R., Cacique, I. S., Aucique-Pérez, C. E., Resende, R. S., Oliveira, J. R., Rodrigues F. Á. (2020) ‘Phosphites of manganese and zinc potentiate the resistance of common bean against infection by Xanthomonas axonopodis pv. phaseoli’, Journal of Phytopathology, 168(11–12), pp. 641–651. doi: 10.1111/jph.12944.
- Don Huber, Volker Römheld and Markus Weinmann ,(2012). ''Relationship between Nutrition, Plant Diseases and Pests'' Marschner's Mineral Nutrition of Higher Plants(third edition) , pp.483–643.doi:10.1016/B978-0-12-384905-2.00028-5.
- Dalio RJD, Fleischmann F, Humez M, Osswald W (2014) Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS One 9(1):e87860. https://doi.org/10.1371/journal.pone.0087860
da Silva Junior, M. B. de Resende M. L. V., Pozza E. A., Resende A. R., Vasconcelos V. A.
- Janssen, D. García, C., Ruiz, L., De Cara-García, M., Simon, A., Martinez, A. (2018) ‘Disease resistance in tomato crops produced in Spain’, Acta Horticulturae, 1207, pp. 63–68. doi: 10.17660/ACTAHORTIC.2018.1207.8.
- Elsharkawy, M., Derbalah, A., Hamza, A., and El-Shaer A., (2020) “Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt,” Environ. Sci. Pollut. Res., vol. 27, no. 16, pp. 19049–19057, , doi: 10.1007/S11356-018-3806-0/TABLES/4.
- Erba, D., Casiraghi, M. C., Ribas-A. A., Cáceres, R., Marfà, O.,Castellari, M.. (2013) ‘Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques’, Journal of Food Composition and Analysis, 31(2), pp. 245–251. doi: 10.1016/J.JFCA.2013.05.014. Faostat (2021). Available at: https://www.fao.org/faostat/en/#home. Accessed date: June, 8, 2022.
- Fagundes-Nacarath, I. R. F., Debona, D., Brás, V. V., Silveira, P. R. and Rodrigues, F. A. (2018). “Phosphites attenuate Sclerotinia sclerotioruminduced physiological impairments in common bean,’’.Acta Physiologia Plantarum, 40, 198. https://doi.org/10.1007/s11738-018-2776-7.
- Felipini, R. Boneti J. I., Cezar A., Neto R., Veleirinho B. (2016) ‘Apple scab control and activation of plant defence responses using potassium phosphite and chitosan’, European Journal of Plant Pathology, 145. 929–939. doi: 10.1007/s10658-016-0881-2.
- Figueira, E. P. P. Felipini R., Boneti, J. I., Cezar, A., Neto, R., Veleirinho B. (2020) ‘Histochemical changes induced by Trichoderma spp. and potassium phosphite in common bean (Phaseolus vulgaris) in response to the attack by Colletotrichum lindemuthianum’, Semina: Ciências Agrárias, 41(3), pp. 811–828. doi: 10.5433/1679-0359.2020v41n3p811
- Guest, D.I., Grant, B.R., 1991. The complex action of phosphonates as antifungal agents. Biological Reviews. 66, pp. 159-187. https://doi.org/10.1111/j.1469-185X.1991.tb01139.x
- Gadaga SJC, Abreu MS, Resende MLV, Ribeiro Junior PM (2017). Phosphites for control of anthracnose in common bean. Fitopatologia: Pesq Agropec Bras 52(1):36–44. https://doi.org/10.1590/s0100204x2017000100005
- Hardy, G.S.J. Barrett, S. Shearer, B. 2001. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30, pp. 133–139. https://doi.org/10.1071/AP01012
- Horuz ,S. Ocal, A. Aysan.Y. (2018) “ Efficacy of hot water and chemical seed treatment on bacterial speck of tomatoin turkey,” Fresenius Environmental Bulletin, 27 , pp.3185-3190.
- Jones, J. Sally, A.M., Thomas, A.Z., Timur, M. M. (2014) ‘Bacterial speck’, Compendium of tomato diseases and pests. 2nd edn. APS press, pp. 54–55.
- Lovatt, C. (1990) ‘Foliar phosphorus fertilization of citrus by foliar application of phosphite’, Summery of Citrus Research, pp. 25-26. doi:10026021719/.
- Liljeroth, E. Lankinen Å., Wiik Lars., Burra D., D. Alexandersson E., Andreasson E. (2016) ‘Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials’, Crop Protection, 86, pp. 42–55. doi: 10.1016/J.CROPRO.2016.04.003.
- Lobato, M.; Machinandiarena, M.; Tambascio, C.; Dosio, G.; Caldiz, D.; Daleo, G.; Andreu, A.; Olivieri, F.(2011). Effect of foliar applications of phosphite on post-harvest potato tubers. European Journal of Plant Pathology, 130:155–163. DOI 10.1007/s10658-011-9741-2
- Li, Y., Yang, D. and Cui, J. (2017) ‘Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against: Pseudomonas syringae pv. tomato’, RSC Advances, 7(62), pp. 38853–38860. doi: 10.1039/c7ra05520j.
- McDonald, A.E.; Grant, B.R.; Plaxton, W.C. 2001. Phosphite (phosphorous acid): Its relevance in the environment and agriculture and influence on plant phosphate starvation response. Journal of Plant Nutrition, 24, pp. 1505–1519. https://doi.org/10.1081/PLN-100106017
- Martínez, S. (2016). Effects of combined application of potassium phosphite and fungicide on stem and sheath disease control, yield, and quality of rice. Crop Protection, 89, 259–264. doi:10.1016/j.cropro.2016.08.002
- Mehta, S. Kumar, A., Achary ,V. M. M. Ganesan, P., Patel, A., Singh A., Rathi, N., Das, T. K., Lal, S. K., Reddy, M. K. (2022) ‘Antifungal and defense elicitor activity of Potassium phosphite against fungal blast disease on ptxD-OE transgenic indica rice and its acceptor parent’, Pesticide Biochemistry and Physiology, 182, pp. 105026. doi: 10.1016/J.PESTBP.2021.105026.
- Mensi I, Jabnoun-Khiareddine H, Zarrougui NE, Ben Zahra H, Cesbron S, Jacques MA, Daami-Remadi M, 2018. First report of tomato bacterial speck caused by Pseudomonas syringae pv. tomato in Tunisia. New Disease Reports 38, 21. http://dx.doi.org/10.5197/j.2044-0588.2018.038.021
- Najdabbasi N., Mirmajlessi S. Mahyar D., Kevin, Mänd M., Landschoot S., Haesaert G., (2022). ‘Combination of potassium phosphite and reduced doses of fungicides encourages protection against Phytophthora infestans in potatoes’, Agriculture, 12(2), 189. doi: 10.3390/agriculture12020189.
- Preston, G. M. (2000) ‘Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time’, Molecular Plant Pathology, 1(5), pp. 263–275. doi: 10.1046/J.1364-3703.2000.00036.X.
- Popović, T., Ivanović, Ž., & Ignjatov, M. (2015). First Report of Pseudomonas viridiflava Causing Pith Necrosis of Tomato (Solanum lycopersicum) in Serbia. Plant Disease, 99(7), 1033–1033. doi:10.1094/pdis-01-15-0052-pdn
- Reuveni, M., Sheglov, D. and Cohen, Y. (2003) ‘Control of moldy-core decay in apple fruits by β-aminobutyric acids and potassium phosphites’, Plant Disease, 87(8), pp. 933–936. doi: 10.1094/PDIS.2003.87.8.933.
- Stamova, L. (2009) ‘Resistance to Pseudomonas syringae pv. tomato race 1’, Acta Horticulturae, 808, pp. 219–222. doi: 10.17660/ACTAHORTIC.2009.808.33.
- Silva, O. C., Santos, H. A.A., Dalla Pria, M.,May-De Mio., and L. L. (2011)‘Potassium phosphite for control of downy mildew of soybean’, Crop Protection, 30(6), pp. 598–604. doi: 10.1016/J.CROPRO.2011.02.015.
- Shenge, S., Mabagala, D., Mortensen, R. C. N., Wydra K. (2008) ‘Molecular characterization of Pseudomonas syringae pv. tomato isolates from Tanzania’, Phytoparasitica, 36(4), pp. 338–351.