Effects of silver nanoparticles (Ag-NPs) on physiological and biochemical properties of tomato plants under drought stress
Year 2023,
, 522 - 535, 18.12.2023
Yelderem Akhoundnejad
,
Özgür Karakaş
,
Hayriye Daşgan
,
Nevzat Sevgin
,
Gamze Gundogdu
,
Baki Temur
Abstract
In this study, the effects of five different concentrations of silver nanoparticles (Ag-NPs) (0, 25, 50, 75, 100 mg l-1) application on two different tomato cultivars grown at three different irrigation levels (25%, 50% and 100%) were investigated. Yield and quality characteristics of tomato fruits were investigated. The level of Ag-NPs that reduces the effects of arid stress on the plant genotypes physiologically and morphologically and their effects on the yield and fruit quality characteristics were also evaluated. Ag-NPs of 50 mg l-1 application was found to be more effective than the other applications in protecting tomato plants against the negativities caused by drought stress. In general, the total yield showed a decrease in AgNPs+stress applications according to Chlorophyll (SPAD) and Water use efficiency. In total yield Ag-NPs, Ag-NPs+50% stress and Ag-NPs+25% stress applications, the highest doses were found for Ag-NPs 25 mgl-1 (5489.66 g m2) and Ag-NPs 25 mg l-1 (4896.00 g m2), respectively. This study provides results that may be used by producers in places where tomato plants grown in arid regions. Silver nanoparticles can be used at ppm levels to produce quality tomato fruits by providing drought resistance of the plant.
Ethical Statement
Ethical approval is not required as there are no studies with human or animal subjects in this article.
Supporting Institution
Sırnak University
Project Number
2019.FNAP.13.01.01.
Thanks
We would like to thank Sırnak University for the financial support of the project numbered 2019.FNAP.13.01.01).
References
- Akhoundnejad, Y. (2020). Response of certain tomato (Solanum lycopersicum) genotypes to drought stress in terms of yield and quality in Sırnak. Internatioanl Journal of Agriculture Environment and Food Sciences, 4 (1), 107-113. https://doi.org/10.31015/jaefs.2020.1.12
- Akhoundnejad, Y., & Dasgan, H.Y. (2020). Photosynthesis, transpiration, stomatal conductance of some melon (Cucumıs melo L.) genotypes under different drought stress. Fresenius Environmental Bulletin, 12, 10974-10979.
- Akhoundnejad, Y., & Karakas, O. (2021). Responses of Allium cepa L. exposed to silver nanoparticles. International Journal of Agriculture Environment and Food Sciences, 3, 599-605. https://doi.org/10.31015/jaefs.2021.4.20
- Akhoundnejad, Y., Daşgan, H.Y., Aydoner Çoban G., Bol, A., & Ünlü, M. (2012). Kuraklığa tolerant bazı domates genotiplerinin arazi performanslarının belirlenmesi. 9. Ulusal Sebze Sempozyumu, 433-437.
- Akhoundnejad, Y., Karakas, O., & Demirci, O. (2022). Response of Lettuce to Silver Nanoparticles Under Drought Conditions. Iranian Journal of Science and Technology, Transactions A: Science, 46, 111-120. https://doi.org/10.1007/s40995-021-01241-x(
- Birgin, O., Akhoundnejad, Y., & Dasgan, H.Y. (2021). The effect of foliar calcium application in tomato (Solanum lycopersicum L.) under drought stress in greenhouse conditions. Applied Ecology And Environmental Research, 19 (4), 2971-2982. https://doi.org/10.15666/aeer/1904_29712982
- Cahn, M.D., Herrero, E.V., Snyder, R.L., & Hanson, B.R. (2001). Water management strategies for improving fruit quality of drip irrigated processing tomatoes. Acta Horticulturae, 542, 111-117. https://doi.org/10.17660/ActaHortic.2001.542.13
- Chew, B.P., & Park, J.S. (2004). Carotenoid action on the immune response. The Journal of Nutrition, 134 (1), 257S-261S. https://doi.org/10.1093/jn/134.1.257S.
- Cıracı, S., Ozbay, E., Gulseren, O., Demir, H.V., Bayındır, M., Oral, A., Senger, T., Aydınlı, A., & Dana, A. (2005). Nanotechnology in Turkey. TUBITAK Journal of Science and Technology.
- Cramer, M.D., Oberholzer, J.A., & Combrink, N.J. (2001). The effect of supplementation of root zone dissolved inorganic carbon on fruit yield and quality of tomatoes (cv ‘Daniela’) grown with salinity. Scientia Horticulturae, 89, 269-289. https://doi.org/10.1016/S0304-4238(00)00243-0
- Cruz de Carvalho, M.H. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signaling & Behavior, 3, 156-165. https://doi.org/10.4161/psb.3.3.5536.
- Dakal, T.C., Kumar, A., Majumdar, R.S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831
- Dasgan, H.Y., Bayram, M., Kusvuran, S., Coban, G., & Akhoundnejad, Y. (2018). Screening of tomatoes for their resistance to salinity and drought stress. Journal of Biology, Agriculture and Healthcare, 8, 31-37.
- Dixit, V., Pandey, V., & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L.cv. Azad). Journal of Experimental Botany, 52 (358), 1101-1109. https://doi.org/10.1093/jexbot/52.358.1101
- Du, Y.Y., Wang, P.C., Chen, J., & Song, C.P. (2008). Comprehensive functional analysis of thecatalase gene family in Arabidopsis thaliana. Journal of Integrative Plant Biology, 50, 1318-1326. https://doi.org/10. 1111/j.1744-7909.2008.00741.x
- Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. https://doi.org/10.1051/agro:2008021
- Firdhouse, M.J., & Lalitha, P. (2015). Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology, Article ID 829526. https://doi.org/10.1155/2015/829526
- Graf, C., Vossen, D.L., Imhof, A., & Blaaderen, A. (2003). A general method to coat colloidal particles with silica. Langmuir, 19, 6693-6700. https://doi.org/10.1021/la0347859
- He, D., Jones, A.M., Garg, S., Pham, A.N., & Waite, T.D. (2011). Silver nanoparticle–reactive oxygen species interactions: Application of a charging-discharging model. The Journal of Physical Chemistry C, 115, 5461-5468. https://doi.org/10.1021/jp111275a
- Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar A., Gopi R., Somasundaram, R., & Panneerselvam, R. (2007). Water deficit stress mitigation by calcium chloride ın catharanthus roseus. effects on oxidative stress, proline metabolism and ındole alkaloid accumulation. Biointerfaces, 60, 110-116. https://doi.org/10.1016/j.colsurfb.2007.06.006.
- Javanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41, 151-5. https://doi.org/10.1016/j.postharvbio.2006.03.008
- Kim, Y.K., Lee, Y.S., Jeong, D.H., & Cho, M.H. (2007). Antimicrobial effect of silver nanoparticles. Nanomedicine, 3 (1), 95-101. https://doi.org/10.1016/j.nano.2006.12.001
- Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science Total Environment, 407, 5243-5246. https://doi.org/10.1016/j.scitotenv.2009.06.024
- Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K.J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8, 94. https://doi.org/10.3390/antiox8040094
- Lee, W.M., Kwak, J.I., & An, Y.J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere, 86, 491-499. https://doi.org/10.1016/j.chemosphere.2011.10.013
- Levard, C., Hotze, E.M., Lowry, G.V., & Brown, G.E. Jr.(2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environmental Science & Technology, 46 (13), 6900-6914. https://doi.org/10.1021/es2037405
- Martí, R., Roselló, S., & Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers (Basel), 8, E58. https://doi.org/10.3390/cancers8060058.
- Nair, P.M.G., & Chung, I.M. (2014). Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere, 112, 105-113. https://doi.org/10.1016/j.chemosphere.2014.03.056
- Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823-839. https://doi.org/10.1289/ehp.7339.
- Okunlola, G.O., Olatunji, O.A., Akinwale, R.O., Tariq, A., & Adelusi, A.A. (2017). Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Scientia Horticulturae, 224, 198-205. https://doi.org/10.1016/j.scienta.2017.06.020
- Ortiz, N., Armada, E., Duque, E., Rolda´n, A., & Azco´n, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. https://doi.org/10.1016/j.jplph.2-014.08.019
- Özdemir, E., & Dündar, Ö. (2001). Effect of Different Postharvest Application on Storage of Kozan and Valencia Late Oranges. Acta Horticulturae, 553, 561–564.
- Patane, C., Tringali, S., & Sortino, O. (2011). Effects of deficit irrigation on biomass,yield, water productivity and fruit quality of processing tomato undersemi-arid Mediterranean climate conditions. Scientia Horticulturae, 129, 590-596. https://doi.org/10.1016/j.scienta.2011.04.030
- Qian, H., Peng, X., Han, X., Ren, J., Sun, L., & Zhengwei, F. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Science, 25, 1947-1956. https://doi.org/10.1016/s1001-0742(12)60301-5
- Quinet, M., Angosto, T., Yuste-Lisbona, F.J., Blanchard-Gros, R., Bigot, S., Martinez, J.P., & Lutts, S. (2019). Tomato fruit development and metabolism. Frontiers in Plant Science, 10, 1554. https://doi.org/10.3389/fpls.2019.01554.
- Sanchez, F.J., Andres, E.F., TenorIo, J.L., & Ayerbe, L. (2004). Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stres. Field Crops Research, 86, 81-90. https://doi.org/10.1016/S0378-4290(03)00121-7
- Soylu, S., Kara, M., Türkmen, M., & Şahin, B. (2022). Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorganic Chemistry Communications, 146, 110103. https://doi.org/10.1016/j.inoche.2022.110103
- Tegart, G. (2003). Nanotechnology: The technology for the 21th century. The Second International Conference on Technology Foresight, Tokyo, 27-28 February, 1-12 pp.
- Xu, Z.P., Zeng, Q.P., Lu, G.Q., & Yu, A.B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61 (3), 1027-1040. https://doi.org/10.1016/j.ces.2005.06.019
Gümüş nanopartiküllerin (Ag-NPs) kuraklık stresi altındaki domates bitkilerinin fizyolojik ve biyokimyasal özelliklerine etkisi
Year 2023,
, 522 - 535, 18.12.2023
Yelderem Akhoundnejad
,
Özgür Karakaş
,
Hayriye Daşgan
,
Nevzat Sevgin
,
Gamze Gundogdu
,
Baki Temur
Abstract
Bu çalışmada, 3 farklı sulama seviyesinde (%25, %50, %100) yetiştirilen 2 farklı domates çeşidine 5 farklı konsantrasyonda gümüş nanopartiküllerin (Ag-NPs) (0, 25, 50, 75, 100 mg l-1) uygulamasının etkileri incelenmiştir. (Ag-NPs) uygulaması ppm bazında kullanılarak domates meyvesinin verim ve kalite özelliklerini incelenmiştir. Ag-nanopartiküllerin domates genotiplerinde bitki üzerindeki kurak stresin etkilerini fizyolojik ve morfolojik olarak hangi düzeyde azalttığı belirlenirken, uygulamaların verim ve meyve kalite özellikleri üzerindeki etkileri de incelenmiştir. Denemede uygulanan Ag-NPs 50 mg l-1 uygulamasının domates bitkisini; kuraklık stresinden kaynaklanan olumsuzluklara karşı korumada diğer uygulamalara göre daha etkili olduğu görülmüştür. Genel olarak toplam verim, meyve uzunluğu ve meyve çapına göre Ag-NPs+stres uygulamaları bir düşüşe neden olmuştur. Toplam verimde Ag-NPs, Ag-NPs+%50 stress ve Ag-NPs+%25 stress uygulamalarında en yüksek dozlar sırasıyla Ag-NPs 25 mg l-1 (5489,66 g m2) ve Ag-NPs 25 mg l-1 (4896,00 g m2) olarak bulunmuştur. Bu çalışma, üreticilerin hemen kullanabilecekleri pratik kısa vadeli sonuçlar sunmaktadır. Bu çalışma, özellikle kurak bölgelerde domates yetiştiriciliğin yapıldığı alanlarda üreticilerin kısa vadede pratik olarak kullanabilecekleri sonuçlar sunmaktadır. Gümüş nanopartiküller, bitkinin kuraklığa dayanıklılığını sağlayarak kaliteli domates meyveleri üretmek için ppm düzeylerde kullanılabilir.
Supporting Institution
ŞIRNAK ÜNİVERSİTESİ
Project Number
2019.FNAP.13.01.01.
References
- Akhoundnejad, Y. (2020). Response of certain tomato (Solanum lycopersicum) genotypes to drought stress in terms of yield and quality in Sırnak. Internatioanl Journal of Agriculture Environment and Food Sciences, 4 (1), 107-113. https://doi.org/10.31015/jaefs.2020.1.12
- Akhoundnejad, Y., & Dasgan, H.Y. (2020). Photosynthesis, transpiration, stomatal conductance of some melon (Cucumıs melo L.) genotypes under different drought stress. Fresenius Environmental Bulletin, 12, 10974-10979.
- Akhoundnejad, Y., & Karakas, O. (2021). Responses of Allium cepa L. exposed to silver nanoparticles. International Journal of Agriculture Environment and Food Sciences, 3, 599-605. https://doi.org/10.31015/jaefs.2021.4.20
- Akhoundnejad, Y., Daşgan, H.Y., Aydoner Çoban G., Bol, A., & Ünlü, M. (2012). Kuraklığa tolerant bazı domates genotiplerinin arazi performanslarının belirlenmesi. 9. Ulusal Sebze Sempozyumu, 433-437.
- Akhoundnejad, Y., Karakas, O., & Demirci, O. (2022). Response of Lettuce to Silver Nanoparticles Under Drought Conditions. Iranian Journal of Science and Technology, Transactions A: Science, 46, 111-120. https://doi.org/10.1007/s40995-021-01241-x(
- Birgin, O., Akhoundnejad, Y., & Dasgan, H.Y. (2021). The effect of foliar calcium application in tomato (Solanum lycopersicum L.) under drought stress in greenhouse conditions. Applied Ecology And Environmental Research, 19 (4), 2971-2982. https://doi.org/10.15666/aeer/1904_29712982
- Cahn, M.D., Herrero, E.V., Snyder, R.L., & Hanson, B.R. (2001). Water management strategies for improving fruit quality of drip irrigated processing tomatoes. Acta Horticulturae, 542, 111-117. https://doi.org/10.17660/ActaHortic.2001.542.13
- Chew, B.P., & Park, J.S. (2004). Carotenoid action on the immune response. The Journal of Nutrition, 134 (1), 257S-261S. https://doi.org/10.1093/jn/134.1.257S.
- Cıracı, S., Ozbay, E., Gulseren, O., Demir, H.V., Bayındır, M., Oral, A., Senger, T., Aydınlı, A., & Dana, A. (2005). Nanotechnology in Turkey. TUBITAK Journal of Science and Technology.
- Cramer, M.D., Oberholzer, J.A., & Combrink, N.J. (2001). The effect of supplementation of root zone dissolved inorganic carbon on fruit yield and quality of tomatoes (cv ‘Daniela’) grown with salinity. Scientia Horticulturae, 89, 269-289. https://doi.org/10.1016/S0304-4238(00)00243-0
- Cruz de Carvalho, M.H. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signaling & Behavior, 3, 156-165. https://doi.org/10.4161/psb.3.3.5536.
- Dakal, T.C., Kumar, A., Majumdar, R.S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831
- Dasgan, H.Y., Bayram, M., Kusvuran, S., Coban, G., & Akhoundnejad, Y. (2018). Screening of tomatoes for their resistance to salinity and drought stress. Journal of Biology, Agriculture and Healthcare, 8, 31-37.
- Dixit, V., Pandey, V., & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L.cv. Azad). Journal of Experimental Botany, 52 (358), 1101-1109. https://doi.org/10.1093/jexbot/52.358.1101
- Du, Y.Y., Wang, P.C., Chen, J., & Song, C.P. (2008). Comprehensive functional analysis of thecatalase gene family in Arabidopsis thaliana. Journal of Integrative Plant Biology, 50, 1318-1326. https://doi.org/10. 1111/j.1744-7909.2008.00741.x
- Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. https://doi.org/10.1051/agro:2008021
- Firdhouse, M.J., & Lalitha, P. (2015). Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology, Article ID 829526. https://doi.org/10.1155/2015/829526
- Graf, C., Vossen, D.L., Imhof, A., & Blaaderen, A. (2003). A general method to coat colloidal particles with silica. Langmuir, 19, 6693-6700. https://doi.org/10.1021/la0347859
- He, D., Jones, A.M., Garg, S., Pham, A.N., & Waite, T.D. (2011). Silver nanoparticle–reactive oxygen species interactions: Application of a charging-discharging model. The Journal of Physical Chemistry C, 115, 5461-5468. https://doi.org/10.1021/jp111275a
- Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar A., Gopi R., Somasundaram, R., & Panneerselvam, R. (2007). Water deficit stress mitigation by calcium chloride ın catharanthus roseus. effects on oxidative stress, proline metabolism and ındole alkaloid accumulation. Biointerfaces, 60, 110-116. https://doi.org/10.1016/j.colsurfb.2007.06.006.
- Javanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41, 151-5. https://doi.org/10.1016/j.postharvbio.2006.03.008
- Kim, Y.K., Lee, Y.S., Jeong, D.H., & Cho, M.H. (2007). Antimicrobial effect of silver nanoparticles. Nanomedicine, 3 (1), 95-101. https://doi.org/10.1016/j.nano.2006.12.001
- Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science Total Environment, 407, 5243-5246. https://doi.org/10.1016/j.scitotenv.2009.06.024
- Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K.J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8, 94. https://doi.org/10.3390/antiox8040094
- Lee, W.M., Kwak, J.I., & An, Y.J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere, 86, 491-499. https://doi.org/10.1016/j.chemosphere.2011.10.013
- Levard, C., Hotze, E.M., Lowry, G.V., & Brown, G.E. Jr.(2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environmental Science & Technology, 46 (13), 6900-6914. https://doi.org/10.1021/es2037405
- Martí, R., Roselló, S., & Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers (Basel), 8, E58. https://doi.org/10.3390/cancers8060058.
- Nair, P.M.G., & Chung, I.M. (2014). Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere, 112, 105-113. https://doi.org/10.1016/j.chemosphere.2014.03.056
- Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823-839. https://doi.org/10.1289/ehp.7339.
- Okunlola, G.O., Olatunji, O.A., Akinwale, R.O., Tariq, A., & Adelusi, A.A. (2017). Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Scientia Horticulturae, 224, 198-205. https://doi.org/10.1016/j.scienta.2017.06.020
- Ortiz, N., Armada, E., Duque, E., Rolda´n, A., & Azco´n, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. https://doi.org/10.1016/j.jplph.2-014.08.019
- Özdemir, E., & Dündar, Ö. (2001). Effect of Different Postharvest Application on Storage of Kozan and Valencia Late Oranges. Acta Horticulturae, 553, 561–564.
- Patane, C., Tringali, S., & Sortino, O. (2011). Effects of deficit irrigation on biomass,yield, water productivity and fruit quality of processing tomato undersemi-arid Mediterranean climate conditions. Scientia Horticulturae, 129, 590-596. https://doi.org/10.1016/j.scienta.2011.04.030
- Qian, H., Peng, X., Han, X., Ren, J., Sun, L., & Zhengwei, F. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Science, 25, 1947-1956. https://doi.org/10.1016/s1001-0742(12)60301-5
- Quinet, M., Angosto, T., Yuste-Lisbona, F.J., Blanchard-Gros, R., Bigot, S., Martinez, J.P., & Lutts, S. (2019). Tomato fruit development and metabolism. Frontiers in Plant Science, 10, 1554. https://doi.org/10.3389/fpls.2019.01554.
- Sanchez, F.J., Andres, E.F., TenorIo, J.L., & Ayerbe, L. (2004). Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stres. Field Crops Research, 86, 81-90. https://doi.org/10.1016/S0378-4290(03)00121-7
- Soylu, S., Kara, M., Türkmen, M., & Şahin, B. (2022). Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorganic Chemistry Communications, 146, 110103. https://doi.org/10.1016/j.inoche.2022.110103
- Tegart, G. (2003). Nanotechnology: The technology for the 21th century. The Second International Conference on Technology Foresight, Tokyo, 27-28 February, 1-12 pp.
- Xu, Z.P., Zeng, Q.P., Lu, G.Q., & Yu, A.B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61 (3), 1027-1040. https://doi.org/10.1016/j.ces.2005.06.019