Dondurarak depolamaya karşılık geleneksel depolama yönteminde nar ve portakal sularının toplam antioksidan kapasitelerindeki değişimler
Year 2023,
Volume: 28 Issue: 1, 174 - 184, 07.04.2023
Kübra Kadıoğlu
,
Esra Yılmaz
,
Hatice Tatli
,
Rümeysa Gök
,
Doğan Çetin
,
Metin Konuş
,
Can Yılmaz
,
Ceylan Fidan Babat
Abstract
Bu çalışmanın amacı, hasat sonrası ürün kaybının önlenmesi için Akdeniz bölgesindeki evlerde halen kullanılan çam iğneleri ve pamuk tohumları kombinasyonundan oluşan geleneksel depolama ve dondurucuda (-20˚C) depolama yöntemlerini nar ve portakal meyvelerinin antioksidan kapasitesini korunma yetenekleri açısından karşılaştırmaktır. Meyveler geleneksel depolama ve dondurucuda depolama grupları olmak üzere iki gruba ayrılmıştır. Geleneksel depolama grubunda; meyveler bir bütün olarak, tasarlanan kasalarda depolanmıştır. Dondurucuda depolama grubunda ise meyveler sıkılmış ve meyve suları -20˚C'de depolanmıştır. İlk antioksidan kapasite ölçümleri meyve örnekleri laboratuvara gelir gelmez 2,2-difenil-1-pikrilhidrazil yöntemi kullanılarak yapılmış, ikinci ve üçüncü ölçümler ise sırasıyla 3. ve 6. aylarda gerçekleştirilmiştir. Sonuçlar her iki depolama yönteminin 3 aylık depolama süresince toplam antioksidan kapasiteyi koruma yetenekleri açısından benzer olduklarını, geleneksel depolama yönteminin en az üç aylık depolama için güvenilir bir şekilde kullanılabileceğini göstermiştir. Altı ay sonunda ise geleneksel depolama ile depolanan nar ve portakalların antioksidan aktivitelerinde %20 ve %33 oranında kayıp gerçekleşirken dondurucuda depolanan meyve sularının antioksidan aktivitelerinde istatistiksel olarak anlamlı bir değişim gözlenmemiştir.
Thanks
Bu çalışma TÜBİTAK 2242 Üniversite Öğrencileri Araştırma Proje Yarışmaları’nda bölge ikinciliği ödülüne layık görülmüştür. Yazarlar TÜBİTAK’a ve sağladığı laboratuvar olanakları için Van Yüzüncü Yıl Üniversitesi’ne teşekkür eder.
References
- Anonim (2020). TUİK Bitkisel Üretim İstatistikleri. https://bit.ly/3xG1lSn ( Erişim tarihi: 20 Şubat 2022)
- Artes F, Tomas-Barberan FA (2000). Post-harvest technological treatments of pomegranate and preparation of derived products. CIHEAM-Options Mediterr, 42: 199-204.
- Atlı HF, Şahin A (2021). Hatay İli Dörtyol İlçesinde Portakal Üretim ve Pazarlaması. Türk Tarım ve Doğa Bilimleri Dergisi 8(3): 834-846.
- Blois MS, 1958. Antioxidant determinations by the use of a stablefree radical. Nature 181(4617): 1199.
Cisneros‐Zevallos L. (2003). The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding‐value of fresh fruits and vegetables. Journal of food science 68(5): 1560-1565.
- Çil O, Erdem F, Aday M 2020. Nar (Punica granatum): Sağlığa Yararı, Ekonomik Değeri ve Hasat Sonrası Muhafaza Metotları. Gıda 45(5): 881-893.
- De Ancos B, Ibanez E, Reglero G, Cano MP (2000). Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. Journal of agricultural and food chemistry 48(3): 873-879.
- Elik A, Yanik DK, Istanbullu Y, Guzelsoy NA, Yavuz A, Gogus F (2019). Strategies to reduce post-harvest losses for fruits and vegetables. Strategies 5(3): 29-39.
- Ergun M (2012). Pomegranate. Tropical and subtropical fruits: postharvest physiology, processing and packaging (Eds. Siddiq M), Wiley, New York. pp 529–548.
- Erkan M, Pekmezci, M (2000).The effects of different storage temperatures and postharvest treatments on storage and chilling injury of “Washington Navel” oranges. Acta Horticulturae 518: 93–100.
- FAO (2019). FAOSTAT online database. http://www.fao.org/faostat/en/#data. (Erişim Tarihi: 01 Nisan 2022)
- FAO (2020). Citrus Fruit Fresh and Processed-Statistical Bulletin 2020.
https://www.fao.org/3/cb6492en/cb6492en.pdf (Erişim Tarihi: 03 Nisan 2022 )
- Favela-Hernández JMJ, González-Santiago O, Ramírez-Cabrera MA, Esquivel-Ferriño PC, Camacho-Corona MDR (2016). Chemistry and pharmacology of Citrus sinensis. Molecules 21(2): 247.
- Garcı́a-Alonso M, de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC (2004). Evaluation of the antioxidant properties of fruits. Food chemistry 84(1): 13-18.
- Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food chemistry 48(10): 4581-4589.
- Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R, Meybeck A (2011). The Metheodology of the FAO Study: Global Food Losses and Food Waste-Extent, Causes and Prevention; SIK Report No. 857; FAO: Rome, Italy, 2011.
- Konuş M, Yılmaz C, Özdoğan N, Çetin D, Kızılkan ND, Kayhan A (2019). Testing of Reproducibility and Consistency of Commonly Used Five Different Antioxidant Capacity Methods on Turnip Juice. Turkish Journal of Agriculture-Food Science and Technology 7(12): 2233-2238.
- Lagha-Benamrouche S, Madani K (2013). Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Industrial Crops and Products 50: 723-730.
- Liu W, Zhang M, Bhandari B (2020). Nanotechnology–A shelf life extension strategy for fruits and vegetables. Critical Reviews in Food Science and Nutrition 60(10): 1706-1721.
- Lohachoompol V, Srzednicki G, Craske J (2004). The change of total anthocyanins in blueberries and their antioxidant effect after drying and freezing. Journal of Biomedicine and Biotechnology 2004(5): 248.
- Mena P, García‐Viguera C, Navarro‐Rico J, Moreno DA, Bartual J, Saura D, Martí N (2011). Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. Journal of the Science of Food and Agriculture 91(10): 1893-1906.
- Mirsaeedghazi H, Emam-Djomeh Z, Ahmadkhaniha R (2014). Effect of frozen storage on the anthocyanins and phenolic components of pomegranate juice. Journal of food science and technology 51(2): 382-386.
- Neri L, Faieta M, Di Mattia C, Sacchetti G, Mastrocola D, Pittia P (2020). Antioxidant activity in frozen plant foods: Effect of cryoprotectants, freezing process and frozen storage. Foods 9(12): 1886.
- Pienaar L (2021). The Economic Contribution of South Africa’s Pomegranate Industry. https://www. sapomegranate.co.za/wp-content/uploads/2021/05/PomegranteReport_2021F.pdf (Erişim tarihi: 18 Şubat 2022).
- Polinati RM, Faller ALK, Fialho E (2010). The effect of freezing at− 18° C and− 70° C with and without ascorbic acid on the stability of antioxidant in extracts of apple and orange fruits. International journal of food science & technology 45(9): 1814-1820.
- Ramezanian A, Erkan M (2017). Pomegranates (Punica granatum L.). Fruit and Vegetable Phytochemicals: Chemistry and Human Health (Eds. Yahia EM), Volume 2, 2nd ed. London, UK: Wiley-Blackwell. pp. 1179-1195.
- Reyes LF, Villarreal JE, Cisneros-Zevallos L (2007). The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry 101(3): 1254-1262.
- Sanofer AA (2014). Role of citrus fruits in health. Journal of Pharmaceutical Sciences and Research 6(2): 121.
- Selcuk N, Erkan M (2015). Changes in phenolic compounds and antioxidant activity of sour–sweet pomegranates cv.‘Hicaznar’during long-term storage under modified atmosphere packaging. Postharvest Biology and Technology 109: 30-39.
- Sidhu HS, Díaz-Pérez JC, MacLean D (2019). Controlled atmosphere storage for pomegranates (Punica granatum L.): benefits over regular air storage. HortScience 54(6): 1061-1066.
- Sun‐Waterhouse D (2011). The development of fruit‐based functional foods targeting the health and wellness market: a review. International Journal of Food Science & Technology 46(5): 899-920.
- Tan CS, Considine M (2006). Storage conditions for fresh fruit and vegetables. Department of Agriculture and Food 145(2006): 4.
The changes in total antioxidant capacities of pomegranate and orange juice in frozen storage versus traditional storage methods
Year 2023,
Volume: 28 Issue: 1, 174 - 184, 07.04.2023
Kübra Kadıoğlu
,
Esra Yılmaz
,
Hatice Tatli
,
Rümeysa Gök
,
Doğan Çetin
,
Metin Konuş
,
Can Yılmaz
,
Ceylan Fidan Babat
Abstract
The aim of this study was to compare the efficiency of traditional storage, in which a combination of pine needles and cotton seeds are used, and frozen storage (at -20˚C) for pomegranates and oranges in terms of the changes in total antioxidant capacities. Both methods are used, especially in the Mediterranean region, in order to prevent post-harvest loss of agricultural products. The fruits were divided into two groups: traditional storage group which contained the fruits stored as a whole and the frozen storage group, which included fruit juices stored at -20˚C. All the antioxidant capacities were detected by using the 2,2-diphenyl-1- picrylhydrazil method. The first tests were conducted as soon as the fruit samples arrived at the laboratory and the following measurements were performed at the end of the 3rd and 6th months. The results revealed that both storage methods were comparable in their ability to preserve the total antioxidant capacity for 3 months of storage and the traditional storage method can be used reliably for at least three months of storage of fruits. However, the antioxidant activities of pomegranate and orange juices stored for 6 months of conventional method were decreased by 20% and 33%, respectively. During the 6-month period, no statistically significant differences in antioxidant activities were observed between frozen fruit juice samples.
References
- Anonim (2020). TUİK Bitkisel Üretim İstatistikleri. https://bit.ly/3xG1lSn ( Erişim tarihi: 20 Şubat 2022)
- Artes F, Tomas-Barberan FA (2000). Post-harvest technological treatments of pomegranate and preparation of derived products. CIHEAM-Options Mediterr, 42: 199-204.
- Atlı HF, Şahin A (2021). Hatay İli Dörtyol İlçesinde Portakal Üretim ve Pazarlaması. Türk Tarım ve Doğa Bilimleri Dergisi 8(3): 834-846.
- Blois MS, 1958. Antioxidant determinations by the use of a stablefree radical. Nature 181(4617): 1199.
Cisneros‐Zevallos L. (2003). The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding‐value of fresh fruits and vegetables. Journal of food science 68(5): 1560-1565.
- Çil O, Erdem F, Aday M 2020. Nar (Punica granatum): Sağlığa Yararı, Ekonomik Değeri ve Hasat Sonrası Muhafaza Metotları. Gıda 45(5): 881-893.
- De Ancos B, Ibanez E, Reglero G, Cano MP (2000). Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. Journal of agricultural and food chemistry 48(3): 873-879.
- Elik A, Yanik DK, Istanbullu Y, Guzelsoy NA, Yavuz A, Gogus F (2019). Strategies to reduce post-harvest losses for fruits and vegetables. Strategies 5(3): 29-39.
- Ergun M (2012). Pomegranate. Tropical and subtropical fruits: postharvest physiology, processing and packaging (Eds. Siddiq M), Wiley, New York. pp 529–548.
- Erkan M, Pekmezci, M (2000).The effects of different storage temperatures and postharvest treatments on storage and chilling injury of “Washington Navel” oranges. Acta Horticulturae 518: 93–100.
- FAO (2019). FAOSTAT online database. http://www.fao.org/faostat/en/#data. (Erişim Tarihi: 01 Nisan 2022)
- FAO (2020). Citrus Fruit Fresh and Processed-Statistical Bulletin 2020.
https://www.fao.org/3/cb6492en/cb6492en.pdf (Erişim Tarihi: 03 Nisan 2022 )
- Favela-Hernández JMJ, González-Santiago O, Ramírez-Cabrera MA, Esquivel-Ferriño PC, Camacho-Corona MDR (2016). Chemistry and pharmacology of Citrus sinensis. Molecules 21(2): 247.
- Garcı́a-Alonso M, de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC (2004). Evaluation of the antioxidant properties of fruits. Food chemistry 84(1): 13-18.
- Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food chemistry 48(10): 4581-4589.
- Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R, Meybeck A (2011). The Metheodology of the FAO Study: Global Food Losses and Food Waste-Extent, Causes and Prevention; SIK Report No. 857; FAO: Rome, Italy, 2011.
- Konuş M, Yılmaz C, Özdoğan N, Çetin D, Kızılkan ND, Kayhan A (2019). Testing of Reproducibility and Consistency of Commonly Used Five Different Antioxidant Capacity Methods on Turnip Juice. Turkish Journal of Agriculture-Food Science and Technology 7(12): 2233-2238.
- Lagha-Benamrouche S, Madani K (2013). Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Industrial Crops and Products 50: 723-730.
- Liu W, Zhang M, Bhandari B (2020). Nanotechnology–A shelf life extension strategy for fruits and vegetables. Critical Reviews in Food Science and Nutrition 60(10): 1706-1721.
- Lohachoompol V, Srzednicki G, Craske J (2004). The change of total anthocyanins in blueberries and their antioxidant effect after drying and freezing. Journal of Biomedicine and Biotechnology 2004(5): 248.
- Mena P, García‐Viguera C, Navarro‐Rico J, Moreno DA, Bartual J, Saura D, Martí N (2011). Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. Journal of the Science of Food and Agriculture 91(10): 1893-1906.
- Mirsaeedghazi H, Emam-Djomeh Z, Ahmadkhaniha R (2014). Effect of frozen storage on the anthocyanins and phenolic components of pomegranate juice. Journal of food science and technology 51(2): 382-386.
- Neri L, Faieta M, Di Mattia C, Sacchetti G, Mastrocola D, Pittia P (2020). Antioxidant activity in frozen plant foods: Effect of cryoprotectants, freezing process and frozen storage. Foods 9(12): 1886.
- Pienaar L (2021). The Economic Contribution of South Africa’s Pomegranate Industry. https://www. sapomegranate.co.za/wp-content/uploads/2021/05/PomegranteReport_2021F.pdf (Erişim tarihi: 18 Şubat 2022).
- Polinati RM, Faller ALK, Fialho E (2010). The effect of freezing at− 18° C and− 70° C with and without ascorbic acid on the stability of antioxidant in extracts of apple and orange fruits. International journal of food science & technology 45(9): 1814-1820.
- Ramezanian A, Erkan M (2017). Pomegranates (Punica granatum L.). Fruit and Vegetable Phytochemicals: Chemistry and Human Health (Eds. Yahia EM), Volume 2, 2nd ed. London, UK: Wiley-Blackwell. pp. 1179-1195.
- Reyes LF, Villarreal JE, Cisneros-Zevallos L (2007). The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry 101(3): 1254-1262.
- Sanofer AA (2014). Role of citrus fruits in health. Journal of Pharmaceutical Sciences and Research 6(2): 121.
- Selcuk N, Erkan M (2015). Changes in phenolic compounds and antioxidant activity of sour–sweet pomegranates cv.‘Hicaznar’during long-term storage under modified atmosphere packaging. Postharvest Biology and Technology 109: 30-39.
- Sidhu HS, Díaz-Pérez JC, MacLean D (2019). Controlled atmosphere storage for pomegranates (Punica granatum L.): benefits over regular air storage. HortScience 54(6): 1061-1066.
- Sun‐Waterhouse D (2011). The development of fruit‐based functional foods targeting the health and wellness market: a review. International Journal of Food Science & Technology 46(5): 899-920.
- Tan CS, Considine M (2006). Storage conditions for fresh fruit and vegetables. Department of Agriculture and Food 145(2006): 4.