Magnetopriming enhanced seed germination in six vegetable species: tomato, pepper, onion, cauliflower, cabbage and carrot
Year 2023,
Volume: 28 Issue: 3, 557 - 567, 18.12.2023
Neslihan Kadıoğlu
,
Sıtkı Ermiş
,
Güleda Öktem
,
İbrahim Demir
Abstract
This study was conducted to assess the impact of magnetopriming on seed germination, root and shoot length in six vegetable species: tomatoes, peppers, onions, cauliflowers, cabbages, and carrots. The seeds of the first three species were exposed to magnetopriming for approximately 5 minutes at 15-17 mT, while the remaining species underwent a 15-minute room temperature treatment. Magnetopriming was found to be more effective in enhancing regular germination across all species. Although the improvements observed in tomatoes, cabbages, and carrots were not statistically significant (p<0.05), it increased regular germination percentages by 8-14% in all species. The most significant benefit from the treatment was observed in onions, with a 14% increase, while the lowest enhancement was recorded in cabbages and tomatoes as 8%. While the mean germination time increased significantly for onions, it remained unchanged for the other species. Additionally, magnetopriming significantly (p<0.05) influenced the shoot and root lengths of seedlings in all species. The most substantial improvement in shoot length was observed in tomatoes and onions, with an increase of 1.4-1.3 cm, while the maximum enhancement in root length was found in cabbages and tomatoes, increasing by 3.5-2 cm, respectively. The results indicate that magnetopriming not only improves germination but also significantly enhances the potential for root and shoot growth in these vegetable species.
Ethical Statement
This article does not contain any studies with human participants performed by any of the authors. This study is a part of the first author's master's thesis.
Thanks
The author expresses gratitude to the Turkish seed companies for providing seed samples of tomato, pepper, onion, cauliflower and cabbage and carrot.
References
- Aladjadjiyan, A. (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture, 8 (3), 369-380.
- Argerich, C.A., Bradford, K.J., & Tarquıs, A.M. (1989). The effects of priming and ageing on resistance to deterioration of tomato seeds. Journal of Experimental Botany, 40 (5), 593-598. https://doi.org/10.1093/jxb/40.5.593
- Baghel, L., Kataria, S., & Guruprasad, K.N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics, 37 (7), 455-470. https://doi.org/10.1002/bem.21988
- Bhardwaj, J., Anand, A., & Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67-73. https://doi.org/10.1016/j.plaphy.2012.05.008
- De Micco, V., Paradiso, R., Aronne, G., De Pascale, S., Quarto, M., & Arena, C. (2014). Leaf anatomy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. The Scientific World Journal, 1-13. https://doi.org/10.1155/2014/428141
- De Souza, A., Sueiro, L., Gonzalez, L.M., Licea, L., Porras, E.P., & Gilart, F. (2008). Improvement of the growth and yield of lettuce plants by non-uniform magnetic fields. Electromagnetic Biology and Medicine, 27 (2), 173-184. https://doi.org/10.1080/15368370802118605
- De Souza, A., Sueiro, L., García, D., & Porras, E. (2010). Extremely low frequency non-uniform magnetic fields improve tomato seed germination and early seedling growth. Seed Science and Technology, 38 (1), 61-72., https://doi.org/10.15258/sst.2010.38.1.06
- De Souza, A., García, D., Sueiro, L., & Gilart, F. (2014). Improvement of the seed germination, growth and yield of onion plants by extremely low frequency non-uniform magnetic fields. Scientia Horticulturae, 176, 63-69. https://doi.org/10.1016/j.scienta.2014.06.034
- Demir, I., Ermis, S., Mavi, K., & Matthews, S. (2008). Mean germination time of pepper seed lots (Capsicum annuum L.) predicts size and uniformity of seedlings in germination tests and transplant modules. Seed Science and Technology, 36 (1), 21-30. https://doi.org/10.15258/sst.2008.36.1.02
- Demir, I., Ozden, E., Gökdas, Z., Njie, S.E., & Aydın, M. (2020). Radicle emergence test predicts normal germination percentages of onion seed lots with different cultivars and genotypes. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25 (3), 434-442. https://doi.org/10.37908/mkutbd.697450
- Dhawi, F. (2014). Why magnetic fields are used to enhance a plant’s growth and productivity?. Annual Research & Review in Biology, 886-896. https://doi.org/10.9734/ARRB/2014/5983
- Ellis, R.H., & Roberts, E.H. (1980). Improved equations for the prediction of seed longevity. Annals of Botany, 45 (1), 13-30. https://doi.org/10.1093/oxfordjournals.aob.a085797
- Ermis, S., Kara, F., Ozden, E., & Demir, I. (2016).Solid matrix priming of cabbage seed lots: repair of ageing and increasing seed quality. Journal of Agricultural Sciences, 22 (4), 588-595. https://doi.org/10.1501/Tarimbil_0000001417
- Fabrissin, I., Sano, N., Seo, M., & North, H.M. (2021). Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off?. Journal of Experimental Botany, 72 (7), 2312-2333. https://doi.org/10.1093/jxb/erab004
- Galland, P., & Pazur, A. (2005). Magnetoreception in plants. Journal of Plant Research, 118, 371-389.
- Hołubowicz, R., Kubisz, L., Gauza, M., Yilin, T., & Hojan-Jezierska, D. (2014). Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42 (1), 168-172. https://doi.org/10.15835/nbha4219131
- ISTA (International Seed Testing Association) (2021). International rules for seed testing. Switzerland, p. 298.
- Kataria, S., Lokesh, B., & Guruprasad, K.N. (2015). Acceleration of germination and early growth characteristics of soybean and maize after pre-treatment of seeds with static magnetic field. International Journal of Tropical Agriculture, 33 (2 (Part II)), 985-992.
- Kataria, S., & Jain, M. (2019). Magnetopriming alleviates adverse effects of abiotic stresses in plants. In Plant Tolerance to Environmental Stress. CRC Press, pp. 427-442.
- Martinez, E., Carbonell, M.V., & Amaya, J.M. (2000). A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro-and Magnetobiology, 19 (3), 271-277. https://doi.org/10.1081/JBC-100102118
- Moon, J.D., & Chung, H.S. (2000). Acceleration of germination of tomato seed by applying AC electric and magnetic fields. Journal of Electrostatics, 48 (2), 103-114. https://doi.org/10.1016/S0304-3886(99)00054-6
- Mridha, N., Chattaraj, S., Chakraborty, D., Anand, A., Aggarwal, P., & Nagarajan, S. (2016). Pre‐sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress. Bioelectromagnetics, 37 (6), 400-408. https://doi.org/10.1002/bem.21994
- Özden, E., Memis, N., Kenanoglu, B.B., & Demir, İ. (2021). Vigour assessment of dill (Anethum graveolens L.) seed lots in relation to predicting seedling emergence potential. Journal of Agricultural Sciences, 27 (1), 50-55. https://doi.org/10.15832/ankutbd.577254
- Sari, M.E., Demir, I., Yildirim, K.C., & Memis, N. (2023). Magnetopriming enhance germination and seedling growth parameters of onion and lettuce seeds. International Journal of Agriculture, Environment and Food Sciences, 7 (3), 468-475. https://doi.org/10.31015/jaefs.2023.3.1
- Sarraf, M., Kataria, S., Taimourya, H., Santos, L.O., Menegatti, R.D., Jain, M., Ihtisham, M., & Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. Plants, 9 (9), 1139. https://doi.org/10.3390/plants9091139
- Shine, M.B., Guruprasad, K.N., & Anand, A. (2011). Enhancement of germination, growth, and photosynthesis in soybean by pre‐treatment of seeds with magnetic field. Bioelectromagnetics, 32 (6), 474-484. https://doi.org/10.1002/bem.20656
- Shine, M.B., & Guruprasad, K.N. (2012). Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiologiae Plantarum, 34, 255-265. https://doi.org/10.1007/s11738-011-0824-7
- Thakur, M., Tiwari, S., Kataria, S., & Anand, A. (2022). Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Scientia Horticulturae, 305, 111355. https://doi.org/10.1016/j.scienta.2022.111355
- Waqas, M., Korres, N.E., Khan, M.D., Nizami, A.S., Deeba, F., Ali, I., & Hussain, H. (2019). Advances in the concept and methods of seed priming. Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crop plants, 11-41. https://doi.org/10.1007/978-981-13-8625-1_2
- Xia, X., Padula, G., Kubisz, L., & HoŁubowicz, R. (2020). Effect of low frequency magnetic field (LFMF) on seed quality of radish (Raphanus sativus L.) seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48 (3), 1458-1464. https://doi.org/10.15835/nbha48311918
- Yaycili, O., & Alikamanoglu, S. (2005). The effect of magnetic field on Paulownia tissue cultures. Plant Cell, Tissue and Organ Culture, 83, 109-114. https://doi.org/10.1007/s11240-005-4852-0
Domates, biber, soğan, karnabahar, lahana ve havuç türlerinde magnetopriming ile tohum çimlenmesinin iyileştirilmesi
Year 2023,
Volume: 28 Issue: 3, 557 - 567, 18.12.2023
Neslihan Kadıoğlu
,
Sıtkı Ermiş
,
Güleda Öktem
,
İbrahim Demir
Abstract
Bu çalışma, magnetopriming’in altı sebze türünde (domates, biber, soğan, karnabahar, lahana ve havuç) tohum çimlenmesi, kök ve sürgün uzunluğu üzerindeki etkisini test etmek amacıyla yapılmıştır. Tohumlar 15-17 mT ile türlerin ilk üçünde yaklaşık 5 dakika ve geri kalan türlerde 15 dakika oda sıcaklığında işleme tabi tutulmuştur. Magnetopriming normal çimlenme üzerinde daha etkili bulunmuştur. Domates, lahana ve havuçta önemli olmasa da (p<0.05), tüm türlerde normal çimlenme yüzdelerini %8-14 arasında artırmıştır. Uygulamadan en büyük fayda %14 ile soğanda, en düşük ise %8 ile lahana ve domateste elde edilmiştir. Ortalama çimlenme süresi soğanda önemli ölçüde artarken diğerlerinde artmamıştır. Magnetopriming tüm türlerde fidelerin sürgün ve kök uzunluklarını önemli ölçüde (p<0.05) etkilemiştir. Sürgün uzunluğunda en büyük avantaj 1,4-1,3 cm olarak domates ve soğanda görülmüştür. Kök uzunluğunda avantaj en fazla lahana ve domateste 3,5-2 cm olarak etki etmiştir. Sonuçlar, magnetopriming’in bu sebze türlerinde sadece çimlenmeyi değil aynı zamanda fide kök ve sürgün büyüme potansiyelini de geliştirdiğini göstermiştir.
References
- Aladjadjiyan, A. (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture, 8 (3), 369-380.
- Argerich, C.A., Bradford, K.J., & Tarquıs, A.M. (1989). The effects of priming and ageing on resistance to deterioration of tomato seeds. Journal of Experimental Botany, 40 (5), 593-598. https://doi.org/10.1093/jxb/40.5.593
- Baghel, L., Kataria, S., & Guruprasad, K.N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics, 37 (7), 455-470. https://doi.org/10.1002/bem.21988
- Bhardwaj, J., Anand, A., & Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67-73. https://doi.org/10.1016/j.plaphy.2012.05.008
- De Micco, V., Paradiso, R., Aronne, G., De Pascale, S., Quarto, M., & Arena, C. (2014). Leaf anatomy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. The Scientific World Journal, 1-13. https://doi.org/10.1155/2014/428141
- De Souza, A., Sueiro, L., Gonzalez, L.M., Licea, L., Porras, E.P., & Gilart, F. (2008). Improvement of the growth and yield of lettuce plants by non-uniform magnetic fields. Electromagnetic Biology and Medicine, 27 (2), 173-184. https://doi.org/10.1080/15368370802118605
- De Souza, A., Sueiro, L., García, D., & Porras, E. (2010). Extremely low frequency non-uniform magnetic fields improve tomato seed germination and early seedling growth. Seed Science and Technology, 38 (1), 61-72., https://doi.org/10.15258/sst.2010.38.1.06
- De Souza, A., García, D., Sueiro, L., & Gilart, F. (2014). Improvement of the seed germination, growth and yield of onion plants by extremely low frequency non-uniform magnetic fields. Scientia Horticulturae, 176, 63-69. https://doi.org/10.1016/j.scienta.2014.06.034
- Demir, I., Ermis, S., Mavi, K., & Matthews, S. (2008). Mean germination time of pepper seed lots (Capsicum annuum L.) predicts size and uniformity of seedlings in germination tests and transplant modules. Seed Science and Technology, 36 (1), 21-30. https://doi.org/10.15258/sst.2008.36.1.02
- Demir, I., Ozden, E., Gökdas, Z., Njie, S.E., & Aydın, M. (2020). Radicle emergence test predicts normal germination percentages of onion seed lots with different cultivars and genotypes. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25 (3), 434-442. https://doi.org/10.37908/mkutbd.697450
- Dhawi, F. (2014). Why magnetic fields are used to enhance a plant’s growth and productivity?. Annual Research & Review in Biology, 886-896. https://doi.org/10.9734/ARRB/2014/5983
- Ellis, R.H., & Roberts, E.H. (1980). Improved equations for the prediction of seed longevity. Annals of Botany, 45 (1), 13-30. https://doi.org/10.1093/oxfordjournals.aob.a085797
- Ermis, S., Kara, F., Ozden, E., & Demir, I. (2016).Solid matrix priming of cabbage seed lots: repair of ageing and increasing seed quality. Journal of Agricultural Sciences, 22 (4), 588-595. https://doi.org/10.1501/Tarimbil_0000001417
- Fabrissin, I., Sano, N., Seo, M., & North, H.M. (2021). Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off?. Journal of Experimental Botany, 72 (7), 2312-2333. https://doi.org/10.1093/jxb/erab004
- Galland, P., & Pazur, A. (2005). Magnetoreception in plants. Journal of Plant Research, 118, 371-389.
- Hołubowicz, R., Kubisz, L., Gauza, M., Yilin, T., & Hojan-Jezierska, D. (2014). Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42 (1), 168-172. https://doi.org/10.15835/nbha4219131
- ISTA (International Seed Testing Association) (2021). International rules for seed testing. Switzerland, p. 298.
- Kataria, S., Lokesh, B., & Guruprasad, K.N. (2015). Acceleration of germination and early growth characteristics of soybean and maize after pre-treatment of seeds with static magnetic field. International Journal of Tropical Agriculture, 33 (2 (Part II)), 985-992.
- Kataria, S., & Jain, M. (2019). Magnetopriming alleviates adverse effects of abiotic stresses in plants. In Plant Tolerance to Environmental Stress. CRC Press, pp. 427-442.
- Martinez, E., Carbonell, M.V., & Amaya, J.M. (2000). A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro-and Magnetobiology, 19 (3), 271-277. https://doi.org/10.1081/JBC-100102118
- Moon, J.D., & Chung, H.S. (2000). Acceleration of germination of tomato seed by applying AC electric and magnetic fields. Journal of Electrostatics, 48 (2), 103-114. https://doi.org/10.1016/S0304-3886(99)00054-6
- Mridha, N., Chattaraj, S., Chakraborty, D., Anand, A., Aggarwal, P., & Nagarajan, S. (2016). Pre‐sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress. Bioelectromagnetics, 37 (6), 400-408. https://doi.org/10.1002/bem.21994
- Özden, E., Memis, N., Kenanoglu, B.B., & Demir, İ. (2021). Vigour assessment of dill (Anethum graveolens L.) seed lots in relation to predicting seedling emergence potential. Journal of Agricultural Sciences, 27 (1), 50-55. https://doi.org/10.15832/ankutbd.577254
- Sari, M.E., Demir, I., Yildirim, K.C., & Memis, N. (2023). Magnetopriming enhance germination and seedling growth parameters of onion and lettuce seeds. International Journal of Agriculture, Environment and Food Sciences, 7 (3), 468-475. https://doi.org/10.31015/jaefs.2023.3.1
- Sarraf, M., Kataria, S., Taimourya, H., Santos, L.O., Menegatti, R.D., Jain, M., Ihtisham, M., & Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. Plants, 9 (9), 1139. https://doi.org/10.3390/plants9091139
- Shine, M.B., Guruprasad, K.N., & Anand, A. (2011). Enhancement of germination, growth, and photosynthesis in soybean by pre‐treatment of seeds with magnetic field. Bioelectromagnetics, 32 (6), 474-484. https://doi.org/10.1002/bem.20656
- Shine, M.B., & Guruprasad, K.N. (2012). Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiologiae Plantarum, 34, 255-265. https://doi.org/10.1007/s11738-011-0824-7
- Thakur, M., Tiwari, S., Kataria, S., & Anand, A. (2022). Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Scientia Horticulturae, 305, 111355. https://doi.org/10.1016/j.scienta.2022.111355
- Waqas, M., Korres, N.E., Khan, M.D., Nizami, A.S., Deeba, F., Ali, I., & Hussain, H. (2019). Advances in the concept and methods of seed priming. Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crop plants, 11-41. https://doi.org/10.1007/978-981-13-8625-1_2
- Xia, X., Padula, G., Kubisz, L., & HoŁubowicz, R. (2020). Effect of low frequency magnetic field (LFMF) on seed quality of radish (Raphanus sativus L.) seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48 (3), 1458-1464. https://doi.org/10.15835/nbha48311918
- Yaycili, O., & Alikamanoglu, S. (2005). The effect of magnetic field on Paulownia tissue cultures. Plant Cell, Tissue and Organ Culture, 83, 109-114. https://doi.org/10.1007/s11240-005-4852-0