Research Article
BibTex RIS Cite

Bitki gelişimini teşvik eden bakteriler: Bazı fasulye çeşitlerinin tarımsal karakterleri üzerine etkileri

Year 2023, Volume: 28 Issue: 3, 616 - 632, 18.12.2023
https://doi.org/10.37908/mkutbd.1307958

Abstract

Bu çalışmada, bitki gelişimini teşvik eden bakteri (PGPB) strainlerinin Seyman ve Sarıkız fasulye çeşitlerinin bazı büyüme parametreleri üzerine etkileri araştırılmıştır. Çalışma petri ve saksı denemesi şeklinde yürütülmüştür. Petri denemesinde bakteri uygulamalarının fasulye tohumlarının çimlenmesine etkisi %1,5’luk agar içeren ortamda değerlendirilmiştir. Saksı denemesi, 3 farklı bakteri straini (Stenotrophomonas maltophilia strain SY55, Microbacterium esteraromaticum strain SY48 ve Rhizobium radiobacter strain SK63), bakteri strainlerinin kombinasyonu (SY55+SY48+SK63), gübre ve negatif kontrol olarak 6 uygulamadan oluşmuştur. In vitro ortamda çeşitler ile uygulamaların interaksiyonunun ortalama çimlenme zamanı ve çimlenme hızı üzerine etkili olduğu görülmüştür. In vivo ortamda, Seyman ve Sarıkız fasulye çeşitlerinde bakteri uygulamalarının Seyman çeşidinde çıkış süresi (4,83 gün), kök uzunluğu (12,94 cm), gövde uzunluğu (35,71 cm), boğum sayısı 2,67 adet), gövde yaş ağırlığı (6,86 g) ve kök kuru ağırlığında (0,11 g), Sarıkız çeşidinde tohumların çıkış süresi (5,83 gün), kök uzunluğu (16,09 cm), yaprak sayısı (4,17 adet), boğum sayısını (3,33 adet) arttırdığı bulunmuştur. En etkili bakteri uygulamasının Stenotrophomonas maltophilia strain SY55 olduğu tespit edilmiştir Strainlerin bitki gelişimini teşvik etmede rol alan bazı spesifik özellikleri (katalaz, siderofor, ACC deaminaz ve indol asetik asit üretimleri) belirlenmiştir.

Ethical Statement

Bu makalede insan veya hayvan deneklerle herhangi bir çalışma bulunmaması nedeniyle etik onaya gerek duyulmamaktadır.

Supporting Institution

Iğdır Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

2019-FBE-L09

Thanks

2019-FBE-L09 numaralı projenin desteklenmesinde verdikleri katkıdan dolayı Iğdır Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkür ederiz.

References

  • Abd El-Azeem, S.A.M., Mehana, T.A., & Shabayek, A.A. (2007). Some plant growth promoting traits of rhizobacteria isolated from Suez Canal region, Egypt. In African Crop Science Conference Proceedings, 8, 1517-1525.
  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science, 26 (1), 1-20. https://doi.org/10.1016/J.Jksus.2013.05.001
  • Ahmad, I., Akhtar, M.J., Asghar, H.N., Ghafoor, U., & Shahid, M. (2016). Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. Journal of Plant Growth Regulation, 35, 303-315. https://doi.org/10.1007/s00344-015-9534-5
  • Akhtar, S., & Ali, B. (2011). Evaluation of rhizobacteria as non-rhizobial inoculants for mung beans. Australian Journal of Crop Science, 5 (13), 1723-1729.
  • Angın, H., & Dadaşoğlu, E. (2022). PGPR izolatlarının bazı fasulye genotiplerinde bitki gelişimi üzerine etkisi. Journal of the Institute of Science and Technology, 12 (4), 2495-2505. https://doi.org/10.21597/jist.1146090
  • Bai, Y., Zhou, X., & Smith, D.L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43 (5), 1774-781. https://doi.org/10.2135/cropsci2003.1774
  • Barea, J.M., & Richardson, A.E. (2015). Phosphate mobilisation by soil microorganisms. Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, 225-234. https://doi.org/10.1007/978-3-319-08575-3
  • Bechtaoui, N., Raklami, A., Benidire, L., Tahiri, A.I., Göttfert, M., & Oufdou, K. (2020). Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Polish Journal of Environmental Studies, 29 (2), 1557-1565. https://doi.org/10.15244/pjoes/110345
  • Bechtaoui, N., Raklami, A., Tahiri, A.I., Benidire, L., El Alaoui, A., Meddich, A., & Oufdou, K. (2019). Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biology Open, 8 (7), bio043968. https://doi.org/10.1242/bio.043968
  • Bench Alr, Sanchez Ra. (2004). Handbook of Seed Physiology. Food Product Press, Ny/ London.
  • Beshir, H.M., Walley, F.L., Bueckert, R., & Tar’an, B. (2015). Response of snap bean cultivars to Rhizobium inoculation under dryland agriculture in Ethiopia. Agronomy, 5 (3), 291-308. https://doi.org/10.3390/agronomy5030291
  • Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170-177. https://doi.org/10.1007/s002039900127
  • Bose, B., & Mishra, T. (1992). Response of wheat seed to presowing seed treatment with Mg(NO3)2. Annals Agriculture Research, 13, 132-136.
  • Bremner, J.M. (1965). Organic Forms of Nitrogen: Methods of Soil Analysis. Chemical and Microbiological Properties Methods, 9, 1238-1255.
  • Chaparro, J.M., Sheflin, A.M., Manter, D.K., & Vivanco, J.M. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 48, 489-499. https://doi.org/10.1007/S00374-012-0691-4
  • Chekanai, V., Chikowo, R., & Vanlauwe, B. (2018). Response of common bean (Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe. Agriculture, Ecosystems & Environment, 266, 167-173. https://doi.org/10.1016/J.Agee. 2018.08.010
  • Collavino, M.M., Sansberro, P.A., Mroginski, L.A., & Aguilar, O.M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46, 727-738. https://doi.org/10.1007/S00374-010-0480-X
  • Cowell, D.C., Dowman, A.A., Lewis, R.J., Pirzad, R., & Watkins, S.D. (1994). The rapid potentiometric detection of catalase positive microorganisms. Biosensors and Bioelectronics, 9 (2), 131-138. https://doi.org/10.1016/0956-5663(94)80104-5
  • Danish, S., Zafar-ul-Hye, M., Hussain, M., Shaaban, M., Núñez-Delgado, A., Hussain, S., & Qayyum, M.F. (2019). Rhizobacteria with ACC-deaminase activity improve nutrient uptake, chlorophyll contents and early seedling growth of wheat under PEG-induced osmotic stress. International Journal of Agriculture & Biology, 21 (6), 1212-1220. https://doi.org/10.17957/ıjab/15.1013
  • Dos Santos, S.R.L., Costa, R.M., de Aviz, R.O., Melo, V.M.M., de Almeida Lopes, A.C., de Araujo Pereira, A.P., & Araujo, A.S.F. (2022). Differential plant growth-promoting rhizobacteria species selection by maize, cowpea, and lima bean. Rhizosphere, 24, 100626. https://doi.org/10.1016/j.rhisph.2022.100626
  • Duman, K., & Soylu, S. (2019). Characterization of antagonistic and plant growth-promoting traits of endophytic bacteria isolated from bean plants against Pseudomonas syringae pv. phaseolicola. Plant Protection Bulletin, 59 (3), 59-69. https://doi.org/10.16955/bitkorb.597214
  • Dworkin, M., & Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75 (5), 592-603.
  • Elkoca, E. (1997). Fasulye (Phaseolus vulgaris L.)’de tuza dayanıklılık üzerine bir araştırma. Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, 76 s.
  • Entesari, M., Sharifzadeh, F., Ahmadzadeh, M., & Farhangfar, M. (2013). Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. International Journal of Agronomy and Plant Production, 4 (4), 610-619.
  • Erman, M., Kotan, R., Çakmakçı, R., Çığ, F., Karagöz, F., & Sezen, M. (2010). Van Gölü Havzası’ndan izole edilen azot fikseri ve fosfat çözücü bakterilerin buğday ve şeker pancarında büyüme ve verim özellikleri üzerine etkileri. Türkiye IV. Organik Tarım Sempozyumu, 28, 325-329.
  • Faisal, M., & Hasnain, S. (2006). Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Letters in Applied Microbiology, 43 (4), 461-466. https://doi.org/10.1111/j.1472-765X.2006.01977.x
  • Forti, C., Shankar, A., Singh, A., Balestrazzi, A., Prasad, V., & Macovei, A. (2020). Hydropriming and biopriming improve Medicago truncatula seed germination and upregulate DNA repair and antioxidant genes. Genes, 11 (3), 242. https://doi.org/10.3390/genes11030242
  • Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Agricultural and Biosystems Engineering, 3 (1), 9-14.
  • Goertz, S.H., & Coons, J.M. (1989). Germination response of tepary and navy beans to sodium chloride and temperature. Hortscience, 24 (6), 923-925. https://doi.org/10.21273/HORTSCI.24.6.923
  • Graham, P.H., & Vance, C.P. (2000). Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Research, 65 (2-3), 93-106. https://doi.org/10.1016/S0378-4290(99)00080-5
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri (I. Basım). Nobel Yayın No: 1241, Fen Bilimleri No: 63, Nobel Yayın Dağıtım, Ankara.
  • Kara, M., & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27 (1), 36-46. https://doi.org/10.37908/mkutbd.1021349
  • Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M., & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
  • Kasim, W.A., Gaafar, R.M., Abou-Ali, R.M., Omar, M.N., & Hewait, H.M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61 (2), 217-227. https://doi.org/10.1016/j.aoas.2016.07.003
  • Kaya Özdoğan, D. (2020). Ankara ili topraklarından bitki büyümesini teşvik edici bakterilerin izolasyonu, tanımlanması ve genetik çeşitliliklerinin belirlenmesi. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, 120 s.
  • Kaya, M.D., Kaya, G., & Kolsarıcı, Ö. (2005). Bazı Brassica türlerinin çimlenme ve çıkışı üzerine NaCl konsantrasyonlarının etkileri. Tarım Bilimleri Dergisi, 11 (4), 448-452. http://doi.org/10.1501/Tarimbil_0000000567
  • Klement, Z., Rudolph, K., & Sands, D.C. (1990). Methods In Phytobacteriology. Akademia Kiado, Budapest, Xıv+568 s.
  • Korir, H., Mungai, N.W., Thuita, M., Hamba, Y., & Masso, C. (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, 8, 141. https://doi.org/10.3389/fpls.2017.00141
  • Kruasuwan, W., & Thamchaipenet, A. (2018). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic diazotrophic Enterobacter sp. EN-21 modulates salt–stress response in sugarcane. Journal of Plant Growth Regulation, 37, 849-858. https://doi.org/10.1007/s00344-018-9780-4
  • Kumar, A., Singh, A.K., & Kishore, A.S. (2018). PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management. Woodhead Publishing. ISBN: 9780128158791.
  • Kumar, V., Shahid, M., Singh, A., Srivastava, M., Mishra, A., Srivastava, Y.K., & Sharma, A. (2014). Effect of biopriming with biocontrol agents Trichoderma harzianum (Th. Azad) and Trichoderma viride (01pp) on chickpea genotype (Radhey). Journal of Plant Pathology & Microbiology, 5, 1000247. http://doi.org/10.4172/2157-7471.1000247
  • Kumari, P., Meena, M., & Upadhyay, R.S. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology, 16, 155-162. https://doi.org/10.1016/j.bcab.2018.07.029
  • Li, Z., Zheng, Y., Li, Y., Cheng, X., Huang, S., Yang, X., & Qin, Y. (2022). Genotype-specific recruitment of rhizosphere bacteria from sandy loam soil for growth promotion of Cucumis sativus var. hardwickii. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.910644
  • Lim, J.H., & Kim, S.D. (2013). Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. The Plant Pathology Journal, 29 (2), 201. http://doi.org/10.5423/PPJ.SI.02.2013.0021
  • Machiani, M.A., Javanmard, A., Morshedloo, M.R., & Maggi, F. (2018). Evaluation of yield, essential oil content and compositions of peppermint (Mentha piperita L.) intercropped with faba bean (Vicia faba L.). Journal of Cleaner Production, 171, 529-537. https://doi.org/10.1016/j.jclepro.2017.10.062
  • Magnucka, E.G., & Pietr, S.J. (2015). Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth. Microbiological Research, 181, 112-119. https://doi.org/10.1016/j.micres.2015.04.005
  • Mahmood, S., Daur, I., Yasir, M., Waqas, M., & Hirt, H. (2022). Synergistic practicing of rhizobacteria and silicon ımprove salt tolerance: Implications from boosted oxidative metabolism, nutrient uptake, growth and grain yield in mung bean. Plants, 11 (15), 1980. https://doi.org/10.3390/plants11151980
  • Mohammed, A.F. (2018). Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). African Journal of Microbiology Research, 12 (17), 399-404.
  • Moroenyane, I., Mendes, L., Tremblay, J., Tripathi, B., & Yergeau, É. (2021). Plant compartments and developmental stages modulate the balance between niche-based and neutral processes in soybean microbiome. Microbial Ecology, 1-13. https://doi.org/10.1007/s00248-021-01688
  • Munees, A., & Mohammad, S.K. (2011). Functional aspects of plant growth promoting rhizobacteria. Insight Microbiology, 1 (3), 39-54.
  • Murillo‐Amador, B., López‐Aguilar, R., Kaya, C., Larrinaga‐Mayoral, J., & Flores‐Hernández, A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188 (4), 235-247. https://doi.org/10.1046/j.1439-037X.2002.00563.x
  • Nadeem, M., Ahmad, R., & Ahmad, M. (2004). Maş fasulyesinin (Vigna radiata L.) büyümesi ve verimi. Tarla Bitkileri Dergisi, 3 (1), 40-42.
  • Nadeem, S.M., Zahir, Z.A., Naveed, M., Asghar, H.N., & Arshad, M. (2010). Rhizobacteria capable of producing ACC‐deaminase may mitigate salt stress in wheat. Soil Science Society of America Journal, 74 (2), 533-542. https://doi.org/10.2136/sssaj2008.0240
  • Naveed, M., Hussain, M.B., Zahir, Z.A., Mitter, B., & Sessitsch, A. (2014). Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73, 121-131. https://doi.org/10.1007/s10725-013-9874-8
  • Negi, S., Bharat, N.K., Kaushal, R., & Rohiwala, P. (2020). Screening of bioagents for seed biopriming in French bean (Phaseolus vulgaris L.) under laboratory condition. International Journal of Chemical Studies, 8 (3), 790-793. https://doi.org/10.22271/chemi.2020.v8.i3j.9298
  • Noreen, S., Ali, B., & Hasnain, S. (2012). Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity. Annals of Microbiology, 62, 411-417. https://doi.org/10.1007/s13213-011-0277-7
  • Önder, M. (1992). Bodur kuru fasulye çeşitlerinin tane verimine ve morfolojik, fenolojik, teknolojik özelliklerine bakteri aşılama ve azot uygulamalarının etkisi. Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 135 s.
  • Penrose, D., & Glick, B. (2003) Methods for isolating and characterizing Acc deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118, 10-15. https://doi.org/10.1034/j.1399-3054. 2003.00086.x
  • Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L.K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. PGPR Amelioration in Sustainable Agriculture, 129-157. https://doi.org/10.1016/B978-0-12-815879-1.00007-0
  • Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K., & Nain, L. (2011). Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Annals of Microbiology, 61 (4), 893-900. https://doi.org/10.1007/s13213-011-0211-z
  • Raza, W., Akhtar, M.J., Arshad, M., & Yousaf, S. (2004). Growth, nodulation and yield of mungbean (Vigna radiata L.) as influenced by coinoculation with rhizobium and plant growth promoting rhizobacteria. Pakistan Journal of Agricultural Sciences, 41 (3/4), 125.
  • Ricci, E., Schwinghamer, T., Fan, D., Smith, D.L., & Gravel, V. (2019). Growth promotion of greenhouse tomatoes with Pseudomonas sp. and Bacillus sp. biofilms and planktonic cells. Applied Soil Ecology, 138, 61-68. https://doi.org/10.1016/j.apsoil.2019.02.009
  • Sağlam, S., Çiftçi, C.Y., Khawar, K.M., Atak, M., & Özcan, S. (2005). In vitro koşullarda fasulye bitkisine dört yapraklı aşamada transformasyon çalışmaları. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 18 (2), 291-294.
  • Saleem, A.R., Brunetti, C., Khalid, A., Della Rocca, G., Raio, A., Emiliani, G., Mahmood, T., & Centritto, M. (2018). Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS One, 13 (2), e0191218. https://doi.org/10.1371/journal.pone.0191218
  • Sandhya, V., SK. Z., A., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46, 17-26. http://doi.org/10.1007/s00374-009-0401-z
  • Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 1-20. https://doi.org/10.1186/1471-2164-14-271
  • Soylu, S., Kara, M., Soylu, E.M., Uysal, A., & Kurt, Ş. (2022). Geotrichum citri-aurantii’nin sebep olduğu turunçgil ekşi çürüklük hastalığının biyolojik mücadelesinde endofit bakterilerin biyokontrol potansiyellerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19, 177-191. https://doi.org/10.33462/jotaf.944704
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş., & Soylu, E.M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312. https://doi.org/10.13080/z-a.2021.108.039
  • Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3 (4), a001438. https://doi.org/10.1101/cshperspect.a001438
  • Spaepen, S., Dobbelaere, S., Croonenborghs, A., & Vanderleyden, J. (2008). Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil, 312, 15-23. https://doi.org/10.1007/s11104-008-9560-1
  • Stefan, M., Munteanu, N., Stoleru, V., & Mihasan, M. (2013). Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Romanian Biotechnological Letters, 18 (2), 8132-8143.
  • Sülü, S.M., Bozkurt, İ.A., & Soylu, S. (2016). Bitki büyüme düzenleyici ve biyolojik mücadele etmeni olarak bakteriyel endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21, 103-111. https://dergipark.org.tr/tr/download/article-file/226513
  • Verma, P., Yadav, A.N., Khannam, K.S., Panjiar, N., Kumar, S., Saxena, A.K., & Suman, A. (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 65, 1885-1899. https://doi.org/10.1007/s13213-014-1027-4
  • Vishwa, S., AK, C., Bineeta, Mb., Debnath, A., Parihar, Nn., Brunda, K., & Saxena, R. (2017). Effect of priming on germination and seedling establishement of chickpea (Cicer arietinum L.) seeds. Journal of Pharmacognosy and Phytochemistry, 6, 72-74.
  • Yang, J., Kloepper, J.W., & Ryu, C.M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14 (1), 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
  • Yıldırım, E., & Güvenç, İ. (2006). Salt tolerance of pepper cultivars during germination and seedling growth. Turkish Journal of Agriculture and Forestry, 30 (5), 347-353.
  • Yılmaz, S., Dönmez, M.F., & Çoruh, İ. (2020). Farklı Lokasyonlarda yabani bitki türlerinden izole edilen bakterilerin tanısı ve azot fikse etme, fosfor, potasyum ve kalsiyum çözme özelliklerinin belirlenmesi. Journal of Agriculture, 3 (2), 71-90. https://doi.org/10.46876/ja.825647

Plant promoting bacteria: Effects on agricultural characteristics of some bean varieties

Year 2023, Volume: 28 Issue: 3, 616 - 632, 18.12.2023
https://doi.org/10.37908/mkutbd.1307958

Abstract

In this study, the effects of plant growth promoting bacterial (PGPB) strains on some growth parameters of Seyman and Sarıkız bean varieties were investigated. The study was carried out as a petri dish and pot experiment. In the petri experiment, the effect of bacterial applications on the germination of bean seeds was evaluated in a medium containing 1.5% agar. The pot experiment consisted of 6 applications: 3 different bacterial strains (Stenotrophomonas maltophilia strain SY55, Microbacterium esteraromaticum strain SY48 and Rhizobium radiobacter strain SK63) combination of 3 bacterial strains (SY55+SY48+SK63), fertilizer and negative control. It was observed that the interaction of cultivars and applications in vitro was effective on average germination time and germination rate. In vivo, emergence time of bacterial applications (4.83 days), root length (12.94 cm), stem length (35.71 cm), number of nodes (2.67), stem fresh weight (6.86 g) in Seyman variety and root dry weight (0.11 g), emergence time of seeds (5.83 days), root length (16.09 cm), number of leaves (4.17), number of nodes (3.33) in Sarıkız variety was found to increase. It was determined that the most effective bacterial application was Stenotrophomonas maltophilia strain SY55. Some specific properties of strains (catalase, siderophore, ACC deaminase and indole acetic acid production) that play a role in promoting plant growth were determined.

Supporting Institution

Iğdır Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

2019-FBE-L09

References

  • Abd El-Azeem, S.A.M., Mehana, T.A., & Shabayek, A.A. (2007). Some plant growth promoting traits of rhizobacteria isolated from Suez Canal region, Egypt. In African Crop Science Conference Proceedings, 8, 1517-1525.
  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science, 26 (1), 1-20. https://doi.org/10.1016/J.Jksus.2013.05.001
  • Ahmad, I., Akhtar, M.J., Asghar, H.N., Ghafoor, U., & Shahid, M. (2016). Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. Journal of Plant Growth Regulation, 35, 303-315. https://doi.org/10.1007/s00344-015-9534-5
  • Akhtar, S., & Ali, B. (2011). Evaluation of rhizobacteria as non-rhizobial inoculants for mung beans. Australian Journal of Crop Science, 5 (13), 1723-1729.
  • Angın, H., & Dadaşoğlu, E. (2022). PGPR izolatlarının bazı fasulye genotiplerinde bitki gelişimi üzerine etkisi. Journal of the Institute of Science and Technology, 12 (4), 2495-2505. https://doi.org/10.21597/jist.1146090
  • Bai, Y., Zhou, X., & Smith, D.L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43 (5), 1774-781. https://doi.org/10.2135/cropsci2003.1774
  • Barea, J.M., & Richardson, A.E. (2015). Phosphate mobilisation by soil microorganisms. Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, 225-234. https://doi.org/10.1007/978-3-319-08575-3
  • Bechtaoui, N., Raklami, A., Benidire, L., Tahiri, A.I., Göttfert, M., & Oufdou, K. (2020). Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Polish Journal of Environmental Studies, 29 (2), 1557-1565. https://doi.org/10.15244/pjoes/110345
  • Bechtaoui, N., Raklami, A., Tahiri, A.I., Benidire, L., El Alaoui, A., Meddich, A., & Oufdou, K. (2019). Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biology Open, 8 (7), bio043968. https://doi.org/10.1242/bio.043968
  • Bench Alr, Sanchez Ra. (2004). Handbook of Seed Physiology. Food Product Press, Ny/ London.
  • Beshir, H.M., Walley, F.L., Bueckert, R., & Tar’an, B. (2015). Response of snap bean cultivars to Rhizobium inoculation under dryland agriculture in Ethiopia. Agronomy, 5 (3), 291-308. https://doi.org/10.3390/agronomy5030291
  • Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170-177. https://doi.org/10.1007/s002039900127
  • Bose, B., & Mishra, T. (1992). Response of wheat seed to presowing seed treatment with Mg(NO3)2. Annals Agriculture Research, 13, 132-136.
  • Bremner, J.M. (1965). Organic Forms of Nitrogen: Methods of Soil Analysis. Chemical and Microbiological Properties Methods, 9, 1238-1255.
  • Chaparro, J.M., Sheflin, A.M., Manter, D.K., & Vivanco, J.M. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 48, 489-499. https://doi.org/10.1007/S00374-012-0691-4
  • Chekanai, V., Chikowo, R., & Vanlauwe, B. (2018). Response of common bean (Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe. Agriculture, Ecosystems & Environment, 266, 167-173. https://doi.org/10.1016/J.Agee. 2018.08.010
  • Collavino, M.M., Sansberro, P.A., Mroginski, L.A., & Aguilar, O.M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46, 727-738. https://doi.org/10.1007/S00374-010-0480-X
  • Cowell, D.C., Dowman, A.A., Lewis, R.J., Pirzad, R., & Watkins, S.D. (1994). The rapid potentiometric detection of catalase positive microorganisms. Biosensors and Bioelectronics, 9 (2), 131-138. https://doi.org/10.1016/0956-5663(94)80104-5
  • Danish, S., Zafar-ul-Hye, M., Hussain, M., Shaaban, M., Núñez-Delgado, A., Hussain, S., & Qayyum, M.F. (2019). Rhizobacteria with ACC-deaminase activity improve nutrient uptake, chlorophyll contents and early seedling growth of wheat under PEG-induced osmotic stress. International Journal of Agriculture & Biology, 21 (6), 1212-1220. https://doi.org/10.17957/ıjab/15.1013
  • Dos Santos, S.R.L., Costa, R.M., de Aviz, R.O., Melo, V.M.M., de Almeida Lopes, A.C., de Araujo Pereira, A.P., & Araujo, A.S.F. (2022). Differential plant growth-promoting rhizobacteria species selection by maize, cowpea, and lima bean. Rhizosphere, 24, 100626. https://doi.org/10.1016/j.rhisph.2022.100626
  • Duman, K., & Soylu, S. (2019). Characterization of antagonistic and plant growth-promoting traits of endophytic bacteria isolated from bean plants against Pseudomonas syringae pv. phaseolicola. Plant Protection Bulletin, 59 (3), 59-69. https://doi.org/10.16955/bitkorb.597214
  • Dworkin, M., & Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75 (5), 592-603.
  • Elkoca, E. (1997). Fasulye (Phaseolus vulgaris L.)’de tuza dayanıklılık üzerine bir araştırma. Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, 76 s.
  • Entesari, M., Sharifzadeh, F., Ahmadzadeh, M., & Farhangfar, M. (2013). Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. International Journal of Agronomy and Plant Production, 4 (4), 610-619.
  • Erman, M., Kotan, R., Çakmakçı, R., Çığ, F., Karagöz, F., & Sezen, M. (2010). Van Gölü Havzası’ndan izole edilen azot fikseri ve fosfat çözücü bakterilerin buğday ve şeker pancarında büyüme ve verim özellikleri üzerine etkileri. Türkiye IV. Organik Tarım Sempozyumu, 28, 325-329.
  • Faisal, M., & Hasnain, S. (2006). Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Letters in Applied Microbiology, 43 (4), 461-466. https://doi.org/10.1111/j.1472-765X.2006.01977.x
  • Forti, C., Shankar, A., Singh, A., Balestrazzi, A., Prasad, V., & Macovei, A. (2020). Hydropriming and biopriming improve Medicago truncatula seed germination and upregulate DNA repair and antioxidant genes. Genes, 11 (3), 242. https://doi.org/10.3390/genes11030242
  • Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Agricultural and Biosystems Engineering, 3 (1), 9-14.
  • Goertz, S.H., & Coons, J.M. (1989). Germination response of tepary and navy beans to sodium chloride and temperature. Hortscience, 24 (6), 923-925. https://doi.org/10.21273/HORTSCI.24.6.923
  • Graham, P.H., & Vance, C.P. (2000). Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Research, 65 (2-3), 93-106. https://doi.org/10.1016/S0378-4290(99)00080-5
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri (I. Basım). Nobel Yayın No: 1241, Fen Bilimleri No: 63, Nobel Yayın Dağıtım, Ankara.
  • Kara, M., & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27 (1), 36-46. https://doi.org/10.37908/mkutbd.1021349
  • Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M., & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
  • Kasim, W.A., Gaafar, R.M., Abou-Ali, R.M., Omar, M.N., & Hewait, H.M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61 (2), 217-227. https://doi.org/10.1016/j.aoas.2016.07.003
  • Kaya Özdoğan, D. (2020). Ankara ili topraklarından bitki büyümesini teşvik edici bakterilerin izolasyonu, tanımlanması ve genetik çeşitliliklerinin belirlenmesi. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, 120 s.
  • Kaya, M.D., Kaya, G., & Kolsarıcı, Ö. (2005). Bazı Brassica türlerinin çimlenme ve çıkışı üzerine NaCl konsantrasyonlarının etkileri. Tarım Bilimleri Dergisi, 11 (4), 448-452. http://doi.org/10.1501/Tarimbil_0000000567
  • Klement, Z., Rudolph, K., & Sands, D.C. (1990). Methods In Phytobacteriology. Akademia Kiado, Budapest, Xıv+568 s.
  • Korir, H., Mungai, N.W., Thuita, M., Hamba, Y., & Masso, C. (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, 8, 141. https://doi.org/10.3389/fpls.2017.00141
  • Kruasuwan, W., & Thamchaipenet, A. (2018). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic diazotrophic Enterobacter sp. EN-21 modulates salt–stress response in sugarcane. Journal of Plant Growth Regulation, 37, 849-858. https://doi.org/10.1007/s00344-018-9780-4
  • Kumar, A., Singh, A.K., & Kishore, A.S. (2018). PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management. Woodhead Publishing. ISBN: 9780128158791.
  • Kumar, V., Shahid, M., Singh, A., Srivastava, M., Mishra, A., Srivastava, Y.K., & Sharma, A. (2014). Effect of biopriming with biocontrol agents Trichoderma harzianum (Th. Azad) and Trichoderma viride (01pp) on chickpea genotype (Radhey). Journal of Plant Pathology & Microbiology, 5, 1000247. http://doi.org/10.4172/2157-7471.1000247
  • Kumari, P., Meena, M., & Upadhyay, R.S. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology, 16, 155-162. https://doi.org/10.1016/j.bcab.2018.07.029
  • Li, Z., Zheng, Y., Li, Y., Cheng, X., Huang, S., Yang, X., & Qin, Y. (2022). Genotype-specific recruitment of rhizosphere bacteria from sandy loam soil for growth promotion of Cucumis sativus var. hardwickii. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.910644
  • Lim, J.H., & Kim, S.D. (2013). Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. The Plant Pathology Journal, 29 (2), 201. http://doi.org/10.5423/PPJ.SI.02.2013.0021
  • Machiani, M.A., Javanmard, A., Morshedloo, M.R., & Maggi, F. (2018). Evaluation of yield, essential oil content and compositions of peppermint (Mentha piperita L.) intercropped with faba bean (Vicia faba L.). Journal of Cleaner Production, 171, 529-537. https://doi.org/10.1016/j.jclepro.2017.10.062
  • Magnucka, E.G., & Pietr, S.J. (2015). Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth. Microbiological Research, 181, 112-119. https://doi.org/10.1016/j.micres.2015.04.005
  • Mahmood, S., Daur, I., Yasir, M., Waqas, M., & Hirt, H. (2022). Synergistic practicing of rhizobacteria and silicon ımprove salt tolerance: Implications from boosted oxidative metabolism, nutrient uptake, growth and grain yield in mung bean. Plants, 11 (15), 1980. https://doi.org/10.3390/plants11151980
  • Mohammed, A.F. (2018). Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). African Journal of Microbiology Research, 12 (17), 399-404.
  • Moroenyane, I., Mendes, L., Tremblay, J., Tripathi, B., & Yergeau, É. (2021). Plant compartments and developmental stages modulate the balance between niche-based and neutral processes in soybean microbiome. Microbial Ecology, 1-13. https://doi.org/10.1007/s00248-021-01688
  • Munees, A., & Mohammad, S.K. (2011). Functional aspects of plant growth promoting rhizobacteria. Insight Microbiology, 1 (3), 39-54.
  • Murillo‐Amador, B., López‐Aguilar, R., Kaya, C., Larrinaga‐Mayoral, J., & Flores‐Hernández, A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188 (4), 235-247. https://doi.org/10.1046/j.1439-037X.2002.00563.x
  • Nadeem, M., Ahmad, R., & Ahmad, M. (2004). Maş fasulyesinin (Vigna radiata L.) büyümesi ve verimi. Tarla Bitkileri Dergisi, 3 (1), 40-42.
  • Nadeem, S.M., Zahir, Z.A., Naveed, M., Asghar, H.N., & Arshad, M. (2010). Rhizobacteria capable of producing ACC‐deaminase may mitigate salt stress in wheat. Soil Science Society of America Journal, 74 (2), 533-542. https://doi.org/10.2136/sssaj2008.0240
  • Naveed, M., Hussain, M.B., Zahir, Z.A., Mitter, B., & Sessitsch, A. (2014). Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73, 121-131. https://doi.org/10.1007/s10725-013-9874-8
  • Negi, S., Bharat, N.K., Kaushal, R., & Rohiwala, P. (2020). Screening of bioagents for seed biopriming in French bean (Phaseolus vulgaris L.) under laboratory condition. International Journal of Chemical Studies, 8 (3), 790-793. https://doi.org/10.22271/chemi.2020.v8.i3j.9298
  • Noreen, S., Ali, B., & Hasnain, S. (2012). Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity. Annals of Microbiology, 62, 411-417. https://doi.org/10.1007/s13213-011-0277-7
  • Önder, M. (1992). Bodur kuru fasulye çeşitlerinin tane verimine ve morfolojik, fenolojik, teknolojik özelliklerine bakteri aşılama ve azot uygulamalarının etkisi. Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 135 s.
  • Penrose, D., & Glick, B. (2003) Methods for isolating and characterizing Acc deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118, 10-15. https://doi.org/10.1034/j.1399-3054. 2003.00086.x
  • Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L.K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. PGPR Amelioration in Sustainable Agriculture, 129-157. https://doi.org/10.1016/B978-0-12-815879-1.00007-0
  • Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K., & Nain, L. (2011). Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Annals of Microbiology, 61 (4), 893-900. https://doi.org/10.1007/s13213-011-0211-z
  • Raza, W., Akhtar, M.J., Arshad, M., & Yousaf, S. (2004). Growth, nodulation and yield of mungbean (Vigna radiata L.) as influenced by coinoculation with rhizobium and plant growth promoting rhizobacteria. Pakistan Journal of Agricultural Sciences, 41 (3/4), 125.
  • Ricci, E., Schwinghamer, T., Fan, D., Smith, D.L., & Gravel, V. (2019). Growth promotion of greenhouse tomatoes with Pseudomonas sp. and Bacillus sp. biofilms and planktonic cells. Applied Soil Ecology, 138, 61-68. https://doi.org/10.1016/j.apsoil.2019.02.009
  • Sağlam, S., Çiftçi, C.Y., Khawar, K.M., Atak, M., & Özcan, S. (2005). In vitro koşullarda fasulye bitkisine dört yapraklı aşamada transformasyon çalışmaları. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 18 (2), 291-294.
  • Saleem, A.R., Brunetti, C., Khalid, A., Della Rocca, G., Raio, A., Emiliani, G., Mahmood, T., & Centritto, M. (2018). Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS One, 13 (2), e0191218. https://doi.org/10.1371/journal.pone.0191218
  • Sandhya, V., SK. Z., A., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46, 17-26. http://doi.org/10.1007/s00374-009-0401-z
  • Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 1-20. https://doi.org/10.1186/1471-2164-14-271
  • Soylu, S., Kara, M., Soylu, E.M., Uysal, A., & Kurt, Ş. (2022). Geotrichum citri-aurantii’nin sebep olduğu turunçgil ekşi çürüklük hastalığının biyolojik mücadelesinde endofit bakterilerin biyokontrol potansiyellerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19, 177-191. https://doi.org/10.33462/jotaf.944704
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş., & Soylu, E.M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312. https://doi.org/10.13080/z-a.2021.108.039
  • Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3 (4), a001438. https://doi.org/10.1101/cshperspect.a001438
  • Spaepen, S., Dobbelaere, S., Croonenborghs, A., & Vanderleyden, J. (2008). Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil, 312, 15-23. https://doi.org/10.1007/s11104-008-9560-1
  • Stefan, M., Munteanu, N., Stoleru, V., & Mihasan, M. (2013). Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Romanian Biotechnological Letters, 18 (2), 8132-8143.
  • Sülü, S.M., Bozkurt, İ.A., & Soylu, S. (2016). Bitki büyüme düzenleyici ve biyolojik mücadele etmeni olarak bakteriyel endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21, 103-111. https://dergipark.org.tr/tr/download/article-file/226513
  • Verma, P., Yadav, A.N., Khannam, K.S., Panjiar, N., Kumar, S., Saxena, A.K., & Suman, A. (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 65, 1885-1899. https://doi.org/10.1007/s13213-014-1027-4
  • Vishwa, S., AK, C., Bineeta, Mb., Debnath, A., Parihar, Nn., Brunda, K., & Saxena, R. (2017). Effect of priming on germination and seedling establishement of chickpea (Cicer arietinum L.) seeds. Journal of Pharmacognosy and Phytochemistry, 6, 72-74.
  • Yang, J., Kloepper, J.W., & Ryu, C.M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14 (1), 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
  • Yıldırım, E., & Güvenç, İ. (2006). Salt tolerance of pepper cultivars during germination and seedling growth. Turkish Journal of Agriculture and Forestry, 30 (5), 347-353.
  • Yılmaz, S., Dönmez, M.F., & Çoruh, İ. (2020). Farklı Lokasyonlarda yabani bitki türlerinden izole edilen bakterilerin tanısı ve azot fikse etme, fosfor, potasyum ve kalsiyum çözme özelliklerinin belirlenmesi. Journal of Agriculture, 3 (2), 71-90. https://doi.org/10.46876/ja.825647
There are 77 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Araştırma Makalesi
Authors

Barış Yıldırım 0009-0006-5477-0352

Mesude Figen Dönmez 0000-0002-7992-8252

Büşran Sunyar 0000-0001-8524-3308

İrfan Çoruh 0000-0002-6569-6163

Project Number 2019-FBE-L09
Early Pub Date December 1, 2023
Publication Date December 18, 2023
Submission Date June 1, 2023
Acceptance Date August 17, 2023
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Yıldırım, B., Dönmez, M. F., Sunyar, B., Çoruh, İ. (2023). Bitki gelişimini teşvik eden bakteriler: Bazı fasulye çeşitlerinin tarımsal karakterleri üzerine etkileri. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 28(3), 616-632. https://doi.org/10.37908/mkutbd.1307958

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download