Araştırma Makalesi
BibTex RIS Kaynak Göster

Differences in physiological indicators of seed germination in durum wheat cultivars subjected to salinity stress

Yıl 2024, Cilt: 29 Sayı: 1, 148 - 157, 08.04.2024
https://doi.org/10.37908/mkutbd.1385772

Öz

This study was conducted using ten different varieties of durum wheat (Altıntaş-95, Ç-1252, Dumlupınar, Eminbey, Kunduru-1149, Kızıltan-91, Mirzabey-2000, Soylu, Svevo, Türköz) to evaluate germination and early seedling stage under salt stress induced by increasing sodium chloride (NaCl) concentrations. In the study, some indices of germination and seedling development were calculated and analyzed. Salt stress significantly reduced germination capacity (GC), germination index (GI), while increasing the stress index (SI). Seedling growth and initial vitality (IV) were also significantly inhibited. Varietal differences emerged in all of these traits: Altıntaş-95 was the least affected variety, while Kızıltan-91 and Svevo were the most affected, and other varieties fell in between. Depending on the varieties, salt stress reduced germination capacity and also affected seedling development. Under low salt stress conditions (0-3 g L-1 NaCl), it is believed that the main reason for the negative impact on germination is osmotic stress. Indeed, salt delayed germination by inhibiting water uptake by plants. Similarly, at high salt levels (6 g L-1 NaCl), salt damaged the cellular structures of plants, significantly impacting both germination and seedling growth. In this context, it would be accurate to say that the first viability and stress index, which clearly distinguishes between the varieties studied, are useful traits for identifying salt-tolerant plant genotypes and can be employed in related studies.

Kaynakça

  • Alaoui, M.M., El Jourmi, L., Ouarzane, A., Lazar, S., El Antri, S., Zahouily, M., & Hmyene, A. (2013). Effet du stress salin sur la germination et la croissance de six variétés marocaines de blé (Effect of salt stress on germination and growth of six Moroccan wheat varieties). Journal of Materials and Environmental Science, 4 (6), 997-1004.
  • Alzahrani, O., Abouseadaa, H., Abdelmoneim, T.K., Alshehri, M.A., Mohamed, E.M., El-Beltagi, H.S., & Mohamed, A.M. (2021). Agronomical, physiological and molecular evaluation reveals superior salt-tolerance in bread wheat through salt-induced priming approach. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49 (2), 12310-12310. https://doi.org/10.15835/nbha49212310
  • Ansari, S.A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 30 (3), 512-523. https://doi.org/10.1016/j.biotechadv.2011.09.005
  • Atak, M., Kaya, M.D., Kaya, G., Çikili, Y., & Çiftçi, C. Y. (2006). Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turkish Journal of Agriculture and Forestry, 30 (1), 39-47.
  • Ayers, A.D., & Hayward, H.E. (1949). A method for measuring the effects of soil salinity on seed germination with observations on several crop plants. Soil Science Society of America Journal, 13 (C), 224-226. https://doi.org/10.2136/sssaj1949.036159950013000C0039x
  • Bouzidi, A., Krouma, A., & Chaieb, M. (2021). Chemical seed priming alleviates salinity stress and improves Sulla carnosa germination in the saline depression of Tunisia. Plant Direct, 5 (11), e357. https://doi.org/10.1002/pld3.357
  • Budaklı Çarpıcı, E., & Erdel, B. (2016). Determination of responses of different alfalfa (Medicago sativa L.) varieties to salt stress at germination stage. Yuzuncu Yıl University Journal of Agricultural Sciences, 26 (1), 61-67. https://doi.org/10.29133/yyutbd.236433
  • Coban, F.; Ozer, H.; Ors, S.; Sahin, U.; Yildiz, G.; Cakmakci, T. (2018). Effects of deficit irrigation on essential oil composition and yield of fennel (Foeniculum vulgare Mill) in a high-altitude environment. Journal of Essential Oil Research, 30, 457-463.
  • Dawood, M.F., Sofy, M.R., Mohamed, H.I., Sofy, A.R., & Abdel-kader, H.A. (2022). Hydrogen sulfide modulates salinity stress in common bean plants by maintaining osmolytes and regulating nitric oxide levels and antioxidant enzyme expression. Journal of Soil Science and Plant Nutrition, 22 (3), 3708-3726. https://doi.org/10.1007/s42729-022-00921-w
  • Dengiz, O., Ozcan, H., Koksal, E. S., Baskan, O., & Kosker, Y. (2010). Sustainable natural resource management and environmental assessment in the Salt Lake (Tuz Golu) specially protected area. Environmental Monitoring and Assessment, 161, 327-342. https://doi.org/10.1007/s10661-009-0749-4
  • Dirik, K.Ö., Saygılı, İ., Özkurt, M., & Sakin, M.A. (2018). Bazı yerel ekmeklik buğday (Triticum aestivum L.) genotiplerinin ozmotik stres altında erken gelişme dönemindeki kuraklık toleransının belirlenmesi. International Journal of Agricultural and Natural Sciences, 1 (2), 95-101.
  • Doruk Kahraman, N., & Gökmen, S. (2022). Effect of salt doses on biological values in durum wheat. Selcuk Journal of Agriculture and Food Sciences, 36 (2), 260-267. https://doi.org/10.15316/SJAFS.2022.034
  • Fuller, M.P., Hamza, J.H., Rihan, H.Z., & Al-Issawi, M. (2012). Germination of primed seed under NaCl stress in wheat. International Scholarly Research Notices, 167804. https://doi.org/10.5402/2012/167804
  • Hickey, L.T., N. Hafeez, A., Robinson, H., Jackson, S.A., Leal-Bertioli, S.C.M., Tester, M., Gao, C., Godwin, I.D., Hayes, B.J., & Wulff, B.B. (2019). Breeding crops to feed 10 billion. Nature Biotechnology, 37 (7), 744-754. https://doi.org/10.1038/s41587-019-0152-9
  • Hmissi, M., Chaieb, M., & Krouma, A. (2023). Differences in the physiological ındicators of seed germination and seedling establishment of durum wheat (Triticum durum Desf.) cultivars subjected to salinity stress. Agronomy, 13 (7), 1718. https://doi.org/10.3390/agronomy13071718
  • Islam, S., Biswas, P.K., Amin, A.K.M.R., Fujita, M., Paul, A.K., Mahmud, J.A., & Hasanuzzaman, M. (2022). Germination and growth performance of seedlings of ascorbic acid, silicon and gibberellic acid treated secondary seed of wheat under salt stress. Bangladesh Agronomy Journal, 25 (1), 115-128.
  • Kopittke, P.M., Menzies, N.W., Wang, P., McKenna, B.A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/j.envint.2019.105078
  • Liu, J., Wu, Y., Dong, G., Zhu, G., & Zhou, G. (2023). Progress of research on the physiology and molecular regulation of sorghum growth under salt stress by gibberellin. International Journal of Molecular Sciences, 24 (7), 6777. https://doi.org/10.3390/ijms24076777
  • Munns, R., & Termaat, A. (1986). Whole-plant responses to salinity. Functional Plant Biology, 13 (1), 143-160. https://doi.org/10.1071/PP9860143
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Murillo‐Amador, B., López‐Aguilar, R., Kaya, C., Larrinaga‐Mayoral, J., & Flores‐Hernández, A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188 (4), 235-247. https://doi.org/10.1046/j.1439-037X.2002.00563.x
  • Okumuş, O. (2022). Çayir üçgülünde (Trifolium pratense L.) in vitro mutasyon uygulamalarinin M1 generasyonunda tuz toleransina etkileri Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, 69 s.
  • Önder, M., & Kahraman, A. (2010). Global climate changes and their effects on field crops. 10th International Multidisiplinary Geoconference SGEM, Conference Proceedings. Volume II, Page: 589-592, 20-26 June 2010, Bulgaria.
  • Patade, V.Y., Bhargava, S., & Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions, 6 (4), 275-282. https://doi.org/10.1080/17429145.2011.557513
  • Pekşen, E., Peksen, A., & Gulumser, A. (2014). Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. International Journal of Current Microbiology and Applied Sciences, 3, 626-634.
  • Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533. https://doi.org/10.1146/annurev-arplant-042811-105550
  • Saboora, A., Kiarostami, K., Behroozbayati, F., & Hajihashemi, S. (2006). Salinity (NaCl) tolerance of wheat genotypes at germination and early seedling growth. Pakistan Journal of Biological Sciences, 9 (11), 2009-2021.
  • Sima, N.A.K.K., Ahmad, S.T., & Pessarakli, M. (2013). Comparative study of different salts (sodium chloride, sodium sulfate, potassium chloride, and potassium sulfate) on growth of forage species. Journal of Plant Nutrition, 36 (2), 214-230. https://doi.org/10.1080/01904167.2012.739242
  • Snedecor, G.W., & Cochran, W.G. (1967). Statistical methods. 6'ed. Iowa State University, press USA, 456. Tanur, M., & Yorgancılar, M. (2020). Tuz stresine maruz bırakılan kanola (Brassica napus L.)’da priming uygulamalarının (salisilik asit ve askorbik asit) çimlenme üzerine etkisi. Journal of the Institute of Science and Technology, 10 (4), 3109-3121. https://doi.org/10.21597/jist.757788
  • Thiam, M., Champion, A., Diouf, D., & Ourèye SY, M. (2013). NaCl effects on in vitro germination and growth of some senegalese cowpea (Vigna unguiculata (L.) Walp.) cultivars. International Scholarly Research Notices, 382417.http://dx.doi.org/10.5402/2013/382417
  • Yavuz, D., Rashid, B.A.R., & Seymen, M. (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776. https://doi.org/10.1016/j.scienta.2022.111776
  • Zulfiqar, A., Khan, D., & Naeem, A. (2013). Salt tolerance of three sorghum cultivars during germination and early seedling growth. International Journal of Biology and Biotechnology, 10 (2), 193-202.

Tuz stresine maruz kalan makarnalık buğday çeşitlerinde tohum çimlenmesinin fizyolojik göstergelerindeki farklılıklar

Yıl 2024, Cilt: 29 Sayı: 1, 148 - 157, 08.04.2024
https://doi.org/10.37908/mkutbd.1385772

Öz

Tuz stresi altında makarnalık buğday çeşitlerinin çimlenme ve erken fide dönemini değerlendirmek amacıyla, farklı tuz (NaCI) konsantrasyonları (0, 3 ve 6 g L-1) ve 10 adet makarnalık buğday çeşidi (Altıntaş-95, Ç-1252, Dumlupınar, Eminbey, Kunduru-1149, Kızıltan-91, Mirzabey-2000, Soylu, Svevo, Türköz) ile bu araştırma yürütülmüştür. Çalışmada çimlenme ve fide gelişiminin bazı indeksleri hesaplanmış ve analiz edilmiştir. Tuz stresi çimlenme kapasitesini (ÇK) ve çimlenme indeksini (Çİ), önemli ölçüde azaltırken, stres indeksini (Sİ) artırmıştır. Fide büyümesi ve başlangıç canlılığı (İC) da tuz etkisiyle önemli ölçüde engellenmiştir. İncelenen özellikler bakımından, çeşitler arasında farklılıklar ortaya çıkmış olup Altıntaş-95 artan tuz dozlarından en az etkilenen çeşit olurken, Kızıltan-91 ve Svevo en çok etkilenen çeşitler olmuştur. Çeşitlere bağlı olarak, tuz stresi çimlenme kapasitesini azaltırken fide gelişimini de etkilemiştir. Araştırma sonucu elde edilen bulgulara göre ortamda bulunan tuzun, osmotik etkisi nedeniyle bitkilerin su alımını engelleyerek çimlenmeyi geciktirdiği ve yüksek tuz seviyesinin (6 g L-1 NaCl) bitkilerin hücresel yapılarına zarar verdiği bu nedenle de çimlenme ve fide gelişiminin etkilendiği gözlemlenmiştir. Bu bağlamda da buğday çeşitleri arasında belirgin bir ayrım yapma imkânı sağlayan ilk canlılık ve stres indeksinin, tuzluluğa karşı toleranslı bitki genotiplerini belirlemek için faydalı özellikler olduğu söylenebilir.

Kaynakça

  • Alaoui, M.M., El Jourmi, L., Ouarzane, A., Lazar, S., El Antri, S., Zahouily, M., & Hmyene, A. (2013). Effet du stress salin sur la germination et la croissance de six variétés marocaines de blé (Effect of salt stress on germination and growth of six Moroccan wheat varieties). Journal of Materials and Environmental Science, 4 (6), 997-1004.
  • Alzahrani, O., Abouseadaa, H., Abdelmoneim, T.K., Alshehri, M.A., Mohamed, E.M., El-Beltagi, H.S., & Mohamed, A.M. (2021). Agronomical, physiological and molecular evaluation reveals superior salt-tolerance in bread wheat through salt-induced priming approach. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49 (2), 12310-12310. https://doi.org/10.15835/nbha49212310
  • Ansari, S.A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 30 (3), 512-523. https://doi.org/10.1016/j.biotechadv.2011.09.005
  • Atak, M., Kaya, M.D., Kaya, G., Çikili, Y., & Çiftçi, C. Y. (2006). Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turkish Journal of Agriculture and Forestry, 30 (1), 39-47.
  • Ayers, A.D., & Hayward, H.E. (1949). A method for measuring the effects of soil salinity on seed germination with observations on several crop plants. Soil Science Society of America Journal, 13 (C), 224-226. https://doi.org/10.2136/sssaj1949.036159950013000C0039x
  • Bouzidi, A., Krouma, A., & Chaieb, M. (2021). Chemical seed priming alleviates salinity stress and improves Sulla carnosa germination in the saline depression of Tunisia. Plant Direct, 5 (11), e357. https://doi.org/10.1002/pld3.357
  • Budaklı Çarpıcı, E., & Erdel, B. (2016). Determination of responses of different alfalfa (Medicago sativa L.) varieties to salt stress at germination stage. Yuzuncu Yıl University Journal of Agricultural Sciences, 26 (1), 61-67. https://doi.org/10.29133/yyutbd.236433
  • Coban, F.; Ozer, H.; Ors, S.; Sahin, U.; Yildiz, G.; Cakmakci, T. (2018). Effects of deficit irrigation on essential oil composition and yield of fennel (Foeniculum vulgare Mill) in a high-altitude environment. Journal of Essential Oil Research, 30, 457-463.
  • Dawood, M.F., Sofy, M.R., Mohamed, H.I., Sofy, A.R., & Abdel-kader, H.A. (2022). Hydrogen sulfide modulates salinity stress in common bean plants by maintaining osmolytes and regulating nitric oxide levels and antioxidant enzyme expression. Journal of Soil Science and Plant Nutrition, 22 (3), 3708-3726. https://doi.org/10.1007/s42729-022-00921-w
  • Dengiz, O., Ozcan, H., Koksal, E. S., Baskan, O., & Kosker, Y. (2010). Sustainable natural resource management and environmental assessment in the Salt Lake (Tuz Golu) specially protected area. Environmental Monitoring and Assessment, 161, 327-342. https://doi.org/10.1007/s10661-009-0749-4
  • Dirik, K.Ö., Saygılı, İ., Özkurt, M., & Sakin, M.A. (2018). Bazı yerel ekmeklik buğday (Triticum aestivum L.) genotiplerinin ozmotik stres altında erken gelişme dönemindeki kuraklık toleransının belirlenmesi. International Journal of Agricultural and Natural Sciences, 1 (2), 95-101.
  • Doruk Kahraman, N., & Gökmen, S. (2022). Effect of salt doses on biological values in durum wheat. Selcuk Journal of Agriculture and Food Sciences, 36 (2), 260-267. https://doi.org/10.15316/SJAFS.2022.034
  • Fuller, M.P., Hamza, J.H., Rihan, H.Z., & Al-Issawi, M. (2012). Germination of primed seed under NaCl stress in wheat. International Scholarly Research Notices, 167804. https://doi.org/10.5402/2012/167804
  • Hickey, L.T., N. Hafeez, A., Robinson, H., Jackson, S.A., Leal-Bertioli, S.C.M., Tester, M., Gao, C., Godwin, I.D., Hayes, B.J., & Wulff, B.B. (2019). Breeding crops to feed 10 billion. Nature Biotechnology, 37 (7), 744-754. https://doi.org/10.1038/s41587-019-0152-9
  • Hmissi, M., Chaieb, M., & Krouma, A. (2023). Differences in the physiological ındicators of seed germination and seedling establishment of durum wheat (Triticum durum Desf.) cultivars subjected to salinity stress. Agronomy, 13 (7), 1718. https://doi.org/10.3390/agronomy13071718
  • Islam, S., Biswas, P.K., Amin, A.K.M.R., Fujita, M., Paul, A.K., Mahmud, J.A., & Hasanuzzaman, M. (2022). Germination and growth performance of seedlings of ascorbic acid, silicon and gibberellic acid treated secondary seed of wheat under salt stress. Bangladesh Agronomy Journal, 25 (1), 115-128.
  • Kopittke, P.M., Menzies, N.W., Wang, P., McKenna, B.A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/j.envint.2019.105078
  • Liu, J., Wu, Y., Dong, G., Zhu, G., & Zhou, G. (2023). Progress of research on the physiology and molecular regulation of sorghum growth under salt stress by gibberellin. International Journal of Molecular Sciences, 24 (7), 6777. https://doi.org/10.3390/ijms24076777
  • Munns, R., & Termaat, A. (1986). Whole-plant responses to salinity. Functional Plant Biology, 13 (1), 143-160. https://doi.org/10.1071/PP9860143
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Murillo‐Amador, B., López‐Aguilar, R., Kaya, C., Larrinaga‐Mayoral, J., & Flores‐Hernández, A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188 (4), 235-247. https://doi.org/10.1046/j.1439-037X.2002.00563.x
  • Okumuş, O. (2022). Çayir üçgülünde (Trifolium pratense L.) in vitro mutasyon uygulamalarinin M1 generasyonunda tuz toleransina etkileri Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, 69 s.
  • Önder, M., & Kahraman, A. (2010). Global climate changes and their effects on field crops. 10th International Multidisiplinary Geoconference SGEM, Conference Proceedings. Volume II, Page: 589-592, 20-26 June 2010, Bulgaria.
  • Patade, V.Y., Bhargava, S., & Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions, 6 (4), 275-282. https://doi.org/10.1080/17429145.2011.557513
  • Pekşen, E., Peksen, A., & Gulumser, A. (2014). Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. International Journal of Current Microbiology and Applied Sciences, 3, 626-634.
  • Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533. https://doi.org/10.1146/annurev-arplant-042811-105550
  • Saboora, A., Kiarostami, K., Behroozbayati, F., & Hajihashemi, S. (2006). Salinity (NaCl) tolerance of wheat genotypes at germination and early seedling growth. Pakistan Journal of Biological Sciences, 9 (11), 2009-2021.
  • Sima, N.A.K.K., Ahmad, S.T., & Pessarakli, M. (2013). Comparative study of different salts (sodium chloride, sodium sulfate, potassium chloride, and potassium sulfate) on growth of forage species. Journal of Plant Nutrition, 36 (2), 214-230. https://doi.org/10.1080/01904167.2012.739242
  • Snedecor, G.W., & Cochran, W.G. (1967). Statistical methods. 6'ed. Iowa State University, press USA, 456. Tanur, M., & Yorgancılar, M. (2020). Tuz stresine maruz bırakılan kanola (Brassica napus L.)’da priming uygulamalarının (salisilik asit ve askorbik asit) çimlenme üzerine etkisi. Journal of the Institute of Science and Technology, 10 (4), 3109-3121. https://doi.org/10.21597/jist.757788
  • Thiam, M., Champion, A., Diouf, D., & Ourèye SY, M. (2013). NaCl effects on in vitro germination and growth of some senegalese cowpea (Vigna unguiculata (L.) Walp.) cultivars. International Scholarly Research Notices, 382417.http://dx.doi.org/10.5402/2013/382417
  • Yavuz, D., Rashid, B.A.R., & Seymen, M. (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776. https://doi.org/10.1016/j.scienta.2022.111776
  • Zulfiqar, A., Khan, D., & Naeem, A. (2013). Salt tolerance of three sorghum cultivars during germination and early seedling growth. International Journal of Biology and Biotechnology, 10 (2), 193-202.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarla Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Neslihan Doruk Kahraman 0000-0002-3613-4399

Ali Topal 0000-0002-1073-2729

Erken Görünüm Tarihi 14 Mart 2024
Yayımlanma Tarihi 8 Nisan 2024
Gönderilme Tarihi 6 Kasım 2023
Kabul Tarihi 1 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 1

Kaynak Göster

APA Doruk Kahraman, N., & Topal, A. (2024). Tuz stresine maruz kalan makarnalık buğday çeşitlerinde tohum çimlenmesinin fizyolojik göstergelerindeki farklılıklar. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(1), 148-157. https://doi.org/10.37908/mkutbd.1385772

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download