Research Article
BibTex RIS Cite

Gram-pozitif ve Gram-negatif patojenlere karşı ozon etkinliğinin farklı yöntemlerle değerlendirilmesi

Year 2024, Volume: 29 Issue: 2, 606 - 621, 12.08.2024
https://doi.org/10.37908/mkutbd.1437244

Abstract

Ozon, güçlü oksidatif özelliği, antimikrobiyal aktivitesi, kolay uygulanabilirliği, işletme maliyetlerinin yok denecek kadar az olması, kullanımında kimyasal madde içermemesi, oldukça etkili ve çevre dostu bir uygulama olması nedeniyle büyük ilgi görmektedir. Bu çalışmada ozon gazının bakteri kültürlerinin üremesi üzerindeki etkisini incelemek amacıyla patojen olarak bilinen iki Gram (+) ve iki Gram (-) bakteri kültürü kullanılmıştır. Numuneler, farklı uygulama parametreleriyle (patojen bakterilere, distile suya ve patojen bakteri ve distile su karışımına) farklı akış hızlarında (4, 5 ve 6 mg/L) ve sürelerde (1, 5, 10, 15 ve 20 dakika) ozonla muamele edilmiştir ve muamele işleminden sonra canlı hücre sayıları belirlenmiştir. Uygulama yöntemleri arasında ozonun bakterilere doğrudan uygulanmasının bakteri üremesini önleme/yok etmede en etkili yöntem olduğu belirlenmiştir. Ayrıca akış hızı ve ozonla temas süresi arttıkça patojen mikroorganizmaların üremesinin azaldığı belirlenmiştir.

Project Number

-

References

  • Alexandre, E.M., Santos-Pedro, D.M, Brandão, T.R., & Silva, C.L. (2011). Influence of aqueous ozone, blanching, and combined treatments on microbial load of red bell peppers, strawberries and watercress. Journal of Food Engineering, 105 (2), 277-282. https://doi.org/10.1016/j.jfoodeng.2011.02.032.
  • Alexopoulos, A., Plessas, S., Ceciu, S., Lazar, V., Mantzourani, I., Voidarou, C., Bezirtzoglou, & E. (2013). Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce (Lactuca sativa) and green bell pepper (Capsicum annuum). Food Control, 30 (2), 491-496. https://doi.org/10.1016/j.foodcont.2012.09.018.
  • Al-Haddad, K.S.H., Al-Qassemi, R.A.S., & Robinson, R.K. (2005). The use of gaseous ozone and gas packaging to control populations of Salmonella infantis and Pseudomonas aeruginosa on the skin of chicken portions. Food Control, 16, 405-410. 10.1016/j.foodcont.2004.04.009.
  • Alwi, N.A., & Ali, A. (2014). Reduction of Escherichia coli O157, Listeria monocytogenes and Salmonella enterica sv. Typhimurium populations on fresh-cut bell peppers using gaseous ozone. Food Control, 46, 304-311. https://doi.org/10.1016/j.foodcont.2014.05.037.
  • Ayranci, U.G., Ozunlu, O., Ergezer, H., & Karaca, H. (2020). Effects of ozone treatment on microbiological quality and physicochemical properties of turkey breast meat. Ozone: Science & Engineering, 42 (1), 95-103. https://doi.org/10.1080/01919512.2019.1653168.
  • Botondi, R., Lembo, M., Carboni, C., & Eramo, V. (2023). The use of ozone technology: an eco–friendly method for the sanitization of the dairy supply chain. Foods, 12, 987. https://doi.org/10.3390/foods12050987.
  • Brodowska, A.J., Nowak, A., & Śmigielsk, K. (2018). Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications: An overview. Critical Reviews in Food Science and Nutrition 58 (13), 2176-2201. https://doi.org/10.1080/10408398.2017.1308313.
  • Calunga, J.L., Menéndez, S., León, R., Chang, S., Guanche, D., Balbin, A., Zayas, J., & Garcia, P. (2012). Application of ozone therapy in patients with knee osteoarthritis. Ozone: Science & Engineering, 34 (6), 469-475. https://doi.org/10.1080/01919512.2012.719120.
  • Cantalejo Díez, M.J., Zouaghi, F., & Pérez Arnedo, M.I. (2016). Combined effects of ozone and freeze-drying on the shelf-life of broiler chicken meat. LWT-Food Science and Technology, 68, 400-407. https://doi.org/10.1016/j.lwt.2015.12.058.
  • Chun, S.M., Ahn, G.R., Yang, G.W., Lee, H.J., & Hong, Y.C. (2023). Sterilization of water-based cutting fluids using compact air-cooled coaxial dielectric barrier discharge reactor with bubbler. Applied Sciences, 13 (22), 12302. https://doi.org/10.3390/app132212302.
  • Coll Cárdenas, F., Andrés, S., Giannuzzi, L., & Zaritzky, N. (2011). Antimicrobial action and effects on beef quality attributes of a gaseous ozone treatment at refrigeration temperatures. Food Control, 22, 1442-47. 10.1016/j.foodcont.2011.03.006.
  • Dubey, P., Singh, A., & Yousuf, O. (2022). Ozonation: an evolving disinfectant technology for the food industry. Food Bioprocess Technology, 15, 2102-2113. https://doi.org/10.1007/s11947-022-02876-3.
  • Epelle, E.I., Macfarlane, A., Cusack, M., Burns, A., Okolie, J.A., Mackay, W., Rateb, M., & Yaseen, M. (2023). Ozone application in different industries: A review of recent developments. Chemical Engineering Journal, 454 (2), 140188. https://doi.org/10.1016/j.cej.2022.140188.
  • Giménez, B., Graiver, N., Giannuzzi, L., & Zaritzky, N. (2021). Treatment of beef with gaseous ozone: physicochemical aspects and antimicrobial effects on heterotrophic microflora and Listeria monocytogenes. Food Control, 121, 107602. https://doi.org/10.1016/j.foodcont.2020.107602.
  • Glowacz, M., Colgan, R., & Rees, D. (2015). The Use of ozone to extend the shelf‐life and maintain quality of fresh produce. Journal of the Science of Food and Agriculture, 95 (4), 662-671. https://doi.org/10.1002/jsfa.6776.
  • Guo, C., Gao, Z., & Shen, J. (2019). Emission rates of ındoor ozone emission ınstruments: A literature review. Building and Environment, 158, 302-318. https://doi.org/10.1016/j.buildenv.2019.05.024.
  • Guzel-Seydim, Z.B., Greene, A.K., & Seydim, A. (2004). Use of ozone in the food ındustry. LWT-Food Science and Technology, 37, 453-460. https://doi.org/10.1016/j.lwt.2003.10.014.
  • Hunt, N.K., & Mariñas, B.J. (1997). Kinetics of Escherichia coli inactivation with ozone. Water Research, 31 (6), 1355-1362. https://doi.org/10.1016/S0043-1354(96)00394-6.
  • Ibanoğlu, S. (2023). Applications of ozonation in the food industry. In Non-thermal Food Processing Operations (pp. 55-91). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818717-3.00003-2.
  • Islam, F., Saeed, F., Afzaal, M., Ahmad, A., Hussain, M., Khalid, M.A., Saewan, S.A., & Khashroum, A.O. (2022). Applications of green technologies‐based approaches for food safety enhancement: A comprehensive review. Food Science & Nutrition, 10 (9), 2855-2867. https://doi.org/10.1002/fsn3.2915.
  • Kanaan, M.H.G. (2018). Antibacterial effect of ozonated water against methicillin-resistant Staphylococcus aureus contaminating chicken meat in wasit province, Iraq. Veterinary World, 11, 1445-53. 10.14202/vetworld.2018.1445-1453.
  • Khadre, M., Yousef, A.E., & Kim, J.G. (2001). Microbiological aspects of ozone applications in food: A review. Journal of Food Science, 66 (9), 1242-1252. 10.1111/j.1365-2621.2001.tb15196.x.
  • Khanashyam, A.C., Shanker, M.A., Kothakota, A., Mahantid, N.K., & Pandiselvam, R. (2022). Ozone applications in milk and meat industry. Ozone: Science & Engineering, 44 (1), 50-65. https://doi.org/10.1080/01919512.2021.1947776
  • Lindsley, W.G., Blachere, F.M., Beezhold, D.H., Thewlis, R.E., Noorbakhsh, B., Othumpangat, S., Goldsmith, W.T., McMillen, C.M., Andrew, M.E., Burrell, C.N., & Noti, J.D. (2016). Viable influenza A virus in airborne particles expelled during coughs versus exhalations. Influenza and Other Respiratory Viruses, 10 (5), 404-413. 10.1111/irv.12390.
  • McHugh, T. (2015). Ozone processing of foods and beverages. Food Technology, 69 (11), 72-74.
  • Monica, V., Rajan, A., & Mahendran, R. (2024). Ozone technologies in food processing, preservation. In Non-Thermal Technologies for the Food Industry (pp. 78-93). CRC Press.
  • Mouele, E.S.M., Tijani, J.O., Badmus, K.O., Pereao, O., Babajide, O., Fatoba, O.O., Zhang, C., Shao, T., Sosnin, E., Tarasenko, V., Laatikainen, K., & Petrik, L.F. (2021). A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. Journal of Environmental Chemical Engineering, 9 (5), 105758. https://doi.org/10.1016/j.jece.2021.105758.
  • Nie, M., Wu, C., Xiao, Y., Song, J., Zhang, Z., Li, D., & Liu, C. (2020). Efficacy of aqueous ozone combined with sodium metasilicate on microbial load reduction of fresh-cut cabbage. International Journal of Food Properties, 23 (1), 2065-2076. https://doi.org/10.1080/10942912.2020.1842446.
  • Niveditha, A., Pandiselvam, R., Prasath, V.A., Singh, S., Gul, K., & Kothakota, A. (2021). Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-A review. Food Control, 130, 108338. https://doi.org/10.1016/j.foodcont.2021.108338.
  • Novak, J.S., & Yuan, J.T. (2004). Increased inactivation of ozone treated Clostridium perfringens vegetative cells and spores on fabricated beef surfaces using mild heat. Journal of Food Protection, 67 (2), 342-346. https://doi.org/10.4315/0362-028X-67.2.342.
  • Novak, J.S., & Yuan, J.T.C. (2003). Viability of Clostridium perfringens, Escherichia coli, and Listeria monocytogenes surviving mild heat or aqueous ozone treatment on beef followed by heat, alkali, or salt stress. Journal of Food Protection, 66, 382-89. 10.4315/0362-028x-66.3.382.
  • Pandiselvam, R., Manikantan, M.R., Divya, V., Ashokkumar, C., Kaavya, R., Kothakota, A., & Ramesh, S.V. (2019). Ozone: An advanced oxidation technology for starch modification. Ozone: Science & Engineering, 41 (6), 491-507. https://doi.org/10.1080/01919512.2019.1577128.
  • Pandiselvam, R., Singh, A., Agriopoulou, S., Sachadyn-Król, M., Aslam, R., Lima, C.M.G., Khanashyam, A.C., Kothakota, A., Atakan, O., Kumar, M., Mathanghi, S.K., & Khaneghah, A.M. (2022). A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends in Food Science & Technology, 127, 74-86. https://doi.org/10.1016/j.tifs.2022.06.008.
  • Patil, S., & Bourke, P. (2012). Ozone processing of fluid foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Elsevier: Amsterdam, The Netherlands, pp 225-261.
  • Perry, J.J., & Yousef, A.E. (2013). Factors affecting thermal resistance of Salmonella enterica serovar enteritidis ODA 99-30581-13 in shell egg contents and use of heat-ozone combinations for egg pasteurization. Journal of Food Protection, 76 (2), 213-219. 10.4315/0362-028X.JFP-12-324.
  • Radjabov, A., Ibragimov, M., Eshpulatov, N.M., & Matchonov, O. (2019). Improving the energy performance of ozone generators used in agricultural ecology. Journal of Physics: Conference Series, 1399 (5), 1-5. 10.1088/1742-6596/1399/5/055060.
  • Rusenova, N., Vasilev, N., Rusenov, A., Milanova, A., & Sirakov, I. (2022). Comparison between some phenotypic and genotypic methods for assessment of antimicrobial resistance trend of bovine mastitis Staphylococcus aureus isolates from Bulgaria. Veterinary Sciences, 9 (8), 401. https://doi.org/10.3390/vetsci9080401.
  • Sadeq, J.N., Al-Husseiny, S.H., Al Muhana, B.M.M., Kshash, Q.H., & Jasim, A. (2024). Isolation and identification of Escherichia coli O157:H7 from houseflies (Musca domestica L) at cattle barns in Al-Qadisiyah Province, Iraq. Veterinary Integrative Sciences, 22 (1), 65-72. https://doi.org/10.12982/VIS.2024.006.
  • Sarron, E., Gadonna-Widehem, P., & Aussenac, T. (2021). Ozone treatments for preserving fresh vegetables quality: A critical review. Food, 10, 605. https://doi.org/10.3390/foods10030605
  • Sivaranjani, S., Prasath, V.A., Pandiselvam, R., Kothakota, A., & Khaneghah, A.M. (2021). Recent advances in applications of ozone in the cereal industry. LWT-Food Science and Technology, 146, 111412. https://doi.org/10.1016/j.lwt.2021.111412.
  • Suh, Y., Patel, S., Kaitlyn, R., Gandhi, J., Joshi, G., Smith, N.L., & Khan, S.A. (2019). Clinical utility of ozone therapy in dental and oral medicine. Medical Gas Research, 9 (3), 163-167. 10.4103/2045-9912.266997.
  • Tavassoli, A., Madadi, M.S., & Gharajalar, S.N. (2022). Molecular inspection of contamination with Salmonella enteritidis in Tabriz city aviaries. Journal of Zoonotic Diseases, 6 (1), 1-6. 10.22034/jzd.2021.46018.1109.
  • Viebahn-Haensler, R., & León Fernández, O.S. (2021). Ozone in medicine. The low-dose ozone concept and its basic biochemical mechanisms of action in chronic inflammatory diseases. International Journal of Molecular Sciences, 22 (15), 7890. https://doi.org/10.3390/ijms22157890
  • von Gunten, U. (2003). Ozonation of drinking water: Part 1. Oxidation kinetics and product formation. Water Research, 37 (7), 1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8.
  • Yuk, H.G., Yoo, M.Y., Yoon, J.W., Marshall, D.L., & Oh, D.H. (2007). Effect of combined ozone and organic acid treatment for control of Escherichia coli O157: H7 and Listeria monocytogenes on enoki mushroom. Food Control, 18 (5), 0-553. 10.1016/j.foodcont.2006.01.004.
  • Zhang, W., Li, L., Shu, Z., Wang, P., Zeng, X., Shen, W., Ding, W., & Shi, Y.C. (2021). Properties of flour from pearled wheat kernels as affected by ozone treatment. Food Chemistry, 128203. 10.1016/j.foodchem.2020.128203

Evaluation of ozone effectiveness against Gram-positive and Gram-negative pathogens using different methods

Year 2024, Volume: 29 Issue: 2, 606 - 621, 12.08.2024
https://doi.org/10.37908/mkutbd.1437244

Abstract

Ozone attracts great attention due to its strong oxidative properties, antimicrobial activity, easy applicability, operating costs almost negligible, lack of chemicals in its use, highly effective and environmentally friendly application. In this study, two Gram (+) and two Gram (-) bacterial cultures, known as pathogens, were used to examine the effect of ozone gas on the growth of bacterial cultures. The samples were treated with ozone at different flow rates (4, 5, and 6 mg/L) and durations (1, 5, 10, 15, and 20 min) with different application parameters (pathogen bacteria, distilled water, and the mixture of distilled water and pathogen bacteria) and the number of viable cells was determined after the procedure. Among the methods applied we found that the direct application of ozone to the bacteria is the most effective in preventing/destroying bacterial growth. Also, it was determined that the growth of pathogenic microorganisms decreased as the flow rate and ozone contact time enhanced.

Ethical Statement

Ethical approval is not applicable, because this article does not contain any studies with human or animal subjects

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Alexandre, E.M., Santos-Pedro, D.M, Brandão, T.R., & Silva, C.L. (2011). Influence of aqueous ozone, blanching, and combined treatments on microbial load of red bell peppers, strawberries and watercress. Journal of Food Engineering, 105 (2), 277-282. https://doi.org/10.1016/j.jfoodeng.2011.02.032.
  • Alexopoulos, A., Plessas, S., Ceciu, S., Lazar, V., Mantzourani, I., Voidarou, C., Bezirtzoglou, & E. (2013). Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce (Lactuca sativa) and green bell pepper (Capsicum annuum). Food Control, 30 (2), 491-496. https://doi.org/10.1016/j.foodcont.2012.09.018.
  • Al-Haddad, K.S.H., Al-Qassemi, R.A.S., & Robinson, R.K. (2005). The use of gaseous ozone and gas packaging to control populations of Salmonella infantis and Pseudomonas aeruginosa on the skin of chicken portions. Food Control, 16, 405-410. 10.1016/j.foodcont.2004.04.009.
  • Alwi, N.A., & Ali, A. (2014). Reduction of Escherichia coli O157, Listeria monocytogenes and Salmonella enterica sv. Typhimurium populations on fresh-cut bell peppers using gaseous ozone. Food Control, 46, 304-311. https://doi.org/10.1016/j.foodcont.2014.05.037.
  • Ayranci, U.G., Ozunlu, O., Ergezer, H., & Karaca, H. (2020). Effects of ozone treatment on microbiological quality and physicochemical properties of turkey breast meat. Ozone: Science & Engineering, 42 (1), 95-103. https://doi.org/10.1080/01919512.2019.1653168.
  • Botondi, R., Lembo, M., Carboni, C., & Eramo, V. (2023). The use of ozone technology: an eco–friendly method for the sanitization of the dairy supply chain. Foods, 12, 987. https://doi.org/10.3390/foods12050987.
  • Brodowska, A.J., Nowak, A., & Śmigielsk, K. (2018). Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications: An overview. Critical Reviews in Food Science and Nutrition 58 (13), 2176-2201. https://doi.org/10.1080/10408398.2017.1308313.
  • Calunga, J.L., Menéndez, S., León, R., Chang, S., Guanche, D., Balbin, A., Zayas, J., & Garcia, P. (2012). Application of ozone therapy in patients with knee osteoarthritis. Ozone: Science & Engineering, 34 (6), 469-475. https://doi.org/10.1080/01919512.2012.719120.
  • Cantalejo Díez, M.J., Zouaghi, F., & Pérez Arnedo, M.I. (2016). Combined effects of ozone and freeze-drying on the shelf-life of broiler chicken meat. LWT-Food Science and Technology, 68, 400-407. https://doi.org/10.1016/j.lwt.2015.12.058.
  • Chun, S.M., Ahn, G.R., Yang, G.W., Lee, H.J., & Hong, Y.C. (2023). Sterilization of water-based cutting fluids using compact air-cooled coaxial dielectric barrier discharge reactor with bubbler. Applied Sciences, 13 (22), 12302. https://doi.org/10.3390/app132212302.
  • Coll Cárdenas, F., Andrés, S., Giannuzzi, L., & Zaritzky, N. (2011). Antimicrobial action and effects on beef quality attributes of a gaseous ozone treatment at refrigeration temperatures. Food Control, 22, 1442-47. 10.1016/j.foodcont.2011.03.006.
  • Dubey, P., Singh, A., & Yousuf, O. (2022). Ozonation: an evolving disinfectant technology for the food industry. Food Bioprocess Technology, 15, 2102-2113. https://doi.org/10.1007/s11947-022-02876-3.
  • Epelle, E.I., Macfarlane, A., Cusack, M., Burns, A., Okolie, J.A., Mackay, W., Rateb, M., & Yaseen, M. (2023). Ozone application in different industries: A review of recent developments. Chemical Engineering Journal, 454 (2), 140188. https://doi.org/10.1016/j.cej.2022.140188.
  • Giménez, B., Graiver, N., Giannuzzi, L., & Zaritzky, N. (2021). Treatment of beef with gaseous ozone: physicochemical aspects and antimicrobial effects on heterotrophic microflora and Listeria monocytogenes. Food Control, 121, 107602. https://doi.org/10.1016/j.foodcont.2020.107602.
  • Glowacz, M., Colgan, R., & Rees, D. (2015). The Use of ozone to extend the shelf‐life and maintain quality of fresh produce. Journal of the Science of Food and Agriculture, 95 (4), 662-671. https://doi.org/10.1002/jsfa.6776.
  • Guo, C., Gao, Z., & Shen, J. (2019). Emission rates of ındoor ozone emission ınstruments: A literature review. Building and Environment, 158, 302-318. https://doi.org/10.1016/j.buildenv.2019.05.024.
  • Guzel-Seydim, Z.B., Greene, A.K., & Seydim, A. (2004). Use of ozone in the food ındustry. LWT-Food Science and Technology, 37, 453-460. https://doi.org/10.1016/j.lwt.2003.10.014.
  • Hunt, N.K., & Mariñas, B.J. (1997). Kinetics of Escherichia coli inactivation with ozone. Water Research, 31 (6), 1355-1362. https://doi.org/10.1016/S0043-1354(96)00394-6.
  • Ibanoğlu, S. (2023). Applications of ozonation in the food industry. In Non-thermal Food Processing Operations (pp. 55-91). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818717-3.00003-2.
  • Islam, F., Saeed, F., Afzaal, M., Ahmad, A., Hussain, M., Khalid, M.A., Saewan, S.A., & Khashroum, A.O. (2022). Applications of green technologies‐based approaches for food safety enhancement: A comprehensive review. Food Science & Nutrition, 10 (9), 2855-2867. https://doi.org/10.1002/fsn3.2915.
  • Kanaan, M.H.G. (2018). Antibacterial effect of ozonated water against methicillin-resistant Staphylococcus aureus contaminating chicken meat in wasit province, Iraq. Veterinary World, 11, 1445-53. 10.14202/vetworld.2018.1445-1453.
  • Khadre, M., Yousef, A.E., & Kim, J.G. (2001). Microbiological aspects of ozone applications in food: A review. Journal of Food Science, 66 (9), 1242-1252. 10.1111/j.1365-2621.2001.tb15196.x.
  • Khanashyam, A.C., Shanker, M.A., Kothakota, A., Mahantid, N.K., & Pandiselvam, R. (2022). Ozone applications in milk and meat industry. Ozone: Science & Engineering, 44 (1), 50-65. https://doi.org/10.1080/01919512.2021.1947776
  • Lindsley, W.G., Blachere, F.M., Beezhold, D.H., Thewlis, R.E., Noorbakhsh, B., Othumpangat, S., Goldsmith, W.T., McMillen, C.M., Andrew, M.E., Burrell, C.N., & Noti, J.D. (2016). Viable influenza A virus in airborne particles expelled during coughs versus exhalations. Influenza and Other Respiratory Viruses, 10 (5), 404-413. 10.1111/irv.12390.
  • McHugh, T. (2015). Ozone processing of foods and beverages. Food Technology, 69 (11), 72-74.
  • Monica, V., Rajan, A., & Mahendran, R. (2024). Ozone technologies in food processing, preservation. In Non-Thermal Technologies for the Food Industry (pp. 78-93). CRC Press.
  • Mouele, E.S.M., Tijani, J.O., Badmus, K.O., Pereao, O., Babajide, O., Fatoba, O.O., Zhang, C., Shao, T., Sosnin, E., Tarasenko, V., Laatikainen, K., & Petrik, L.F. (2021). A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. Journal of Environmental Chemical Engineering, 9 (5), 105758. https://doi.org/10.1016/j.jece.2021.105758.
  • Nie, M., Wu, C., Xiao, Y., Song, J., Zhang, Z., Li, D., & Liu, C. (2020). Efficacy of aqueous ozone combined with sodium metasilicate on microbial load reduction of fresh-cut cabbage. International Journal of Food Properties, 23 (1), 2065-2076. https://doi.org/10.1080/10942912.2020.1842446.
  • Niveditha, A., Pandiselvam, R., Prasath, V.A., Singh, S., Gul, K., & Kothakota, A. (2021). Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-A review. Food Control, 130, 108338. https://doi.org/10.1016/j.foodcont.2021.108338.
  • Novak, J.S., & Yuan, J.T. (2004). Increased inactivation of ozone treated Clostridium perfringens vegetative cells and spores on fabricated beef surfaces using mild heat. Journal of Food Protection, 67 (2), 342-346. https://doi.org/10.4315/0362-028X-67.2.342.
  • Novak, J.S., & Yuan, J.T.C. (2003). Viability of Clostridium perfringens, Escherichia coli, and Listeria monocytogenes surviving mild heat or aqueous ozone treatment on beef followed by heat, alkali, or salt stress. Journal of Food Protection, 66, 382-89. 10.4315/0362-028x-66.3.382.
  • Pandiselvam, R., Manikantan, M.R., Divya, V., Ashokkumar, C., Kaavya, R., Kothakota, A., & Ramesh, S.V. (2019). Ozone: An advanced oxidation technology for starch modification. Ozone: Science & Engineering, 41 (6), 491-507. https://doi.org/10.1080/01919512.2019.1577128.
  • Pandiselvam, R., Singh, A., Agriopoulou, S., Sachadyn-Król, M., Aslam, R., Lima, C.M.G., Khanashyam, A.C., Kothakota, A., Atakan, O., Kumar, M., Mathanghi, S.K., & Khaneghah, A.M. (2022). A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends in Food Science & Technology, 127, 74-86. https://doi.org/10.1016/j.tifs.2022.06.008.
  • Patil, S., & Bourke, P. (2012). Ozone processing of fluid foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Elsevier: Amsterdam, The Netherlands, pp 225-261.
  • Perry, J.J., & Yousef, A.E. (2013). Factors affecting thermal resistance of Salmonella enterica serovar enteritidis ODA 99-30581-13 in shell egg contents and use of heat-ozone combinations for egg pasteurization. Journal of Food Protection, 76 (2), 213-219. 10.4315/0362-028X.JFP-12-324.
  • Radjabov, A., Ibragimov, M., Eshpulatov, N.M., & Matchonov, O. (2019). Improving the energy performance of ozone generators used in agricultural ecology. Journal of Physics: Conference Series, 1399 (5), 1-5. 10.1088/1742-6596/1399/5/055060.
  • Rusenova, N., Vasilev, N., Rusenov, A., Milanova, A., & Sirakov, I. (2022). Comparison between some phenotypic and genotypic methods for assessment of antimicrobial resistance trend of bovine mastitis Staphylococcus aureus isolates from Bulgaria. Veterinary Sciences, 9 (8), 401. https://doi.org/10.3390/vetsci9080401.
  • Sadeq, J.N., Al-Husseiny, S.H., Al Muhana, B.M.M., Kshash, Q.H., & Jasim, A. (2024). Isolation and identification of Escherichia coli O157:H7 from houseflies (Musca domestica L) at cattle barns in Al-Qadisiyah Province, Iraq. Veterinary Integrative Sciences, 22 (1), 65-72. https://doi.org/10.12982/VIS.2024.006.
  • Sarron, E., Gadonna-Widehem, P., & Aussenac, T. (2021). Ozone treatments for preserving fresh vegetables quality: A critical review. Food, 10, 605. https://doi.org/10.3390/foods10030605
  • Sivaranjani, S., Prasath, V.A., Pandiselvam, R., Kothakota, A., & Khaneghah, A.M. (2021). Recent advances in applications of ozone in the cereal industry. LWT-Food Science and Technology, 146, 111412. https://doi.org/10.1016/j.lwt.2021.111412.
  • Suh, Y., Patel, S., Kaitlyn, R., Gandhi, J., Joshi, G., Smith, N.L., & Khan, S.A. (2019). Clinical utility of ozone therapy in dental and oral medicine. Medical Gas Research, 9 (3), 163-167. 10.4103/2045-9912.266997.
  • Tavassoli, A., Madadi, M.S., & Gharajalar, S.N. (2022). Molecular inspection of contamination with Salmonella enteritidis in Tabriz city aviaries. Journal of Zoonotic Diseases, 6 (1), 1-6. 10.22034/jzd.2021.46018.1109.
  • Viebahn-Haensler, R., & León Fernández, O.S. (2021). Ozone in medicine. The low-dose ozone concept and its basic biochemical mechanisms of action in chronic inflammatory diseases. International Journal of Molecular Sciences, 22 (15), 7890. https://doi.org/10.3390/ijms22157890
  • von Gunten, U. (2003). Ozonation of drinking water: Part 1. Oxidation kinetics and product formation. Water Research, 37 (7), 1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8.
  • Yuk, H.G., Yoo, M.Y., Yoon, J.W., Marshall, D.L., & Oh, D.H. (2007). Effect of combined ozone and organic acid treatment for control of Escherichia coli O157: H7 and Listeria monocytogenes on enoki mushroom. Food Control, 18 (5), 0-553. 10.1016/j.foodcont.2006.01.004.
  • Zhang, W., Li, L., Shu, Z., Wang, P., Zeng, X., Shen, W., Ding, W., & Shi, Y.C. (2021). Properties of flour from pearled wheat kernels as affected by ozone treatment. Food Chemistry, 128203. 10.1016/j.foodchem.2020.128203
There are 46 citations in total.

Details

Primary Language English
Subjects Food Sciences (Other), Agricultural Biotechnology (Other)
Journal Section Araştırma Makalesi
Authors

Berat Çınar Acar 0000-0003-4662-0865

Project Number -
Early Pub Date August 3, 2024
Publication Date August 12, 2024
Submission Date February 14, 2024
Acceptance Date June 8, 2024
Published in Issue Year 2024 Volume: 29 Issue: 2

Cite

APA Çınar Acar, B. (2024). Evaluation of ozone effectiveness against Gram-positive and Gram-negative pathogens using different methods. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(2), 606-621. https://doi.org/10.37908/mkutbd.1437244

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download