Research Article
BibTex RIS Cite

Rhizobium, Azotobakter ve mikrobiyal konsorsiyumun (Rhizobium/Azotobakter) nohutta (Cicer arietinum L.) bazı büyüme parametreleri ve nodulasyon üzerine etkisi

Year 2024, Volume: 29 Issue: 3, 735 - 745
https://doi.org/10.37908/mkutbd.1480633

Abstract

Rhizobium ve azotobakter gibi mikrobiyal gübrelerin kullanımı, kimyasal gübrelere olan ihtiyacı ve olumsuz çevresel etkileri azaltabilir. Verimliliği artırmak için gereğinden fazla kullanılan kimyasal gübrelemenin ekonomik olmadığı, toprağın mikroorganizma populasyonunu olumsuz olarak etkilediği, ayrıca bitkilerde depolanarak ve yeraltı sularına karışarak insan ve hayvan sağlığı açısından ciddi sorunlara sebep olduğu belirlenmiştir. Bu amaçla araştırmada; kontrol, azotlu kontrol, rhizobium, azotobakter ve rhizobium/azotobakter’in konsorsiyum uygulamaları ile kontrollü şartlarda sera denemesi kurulmuştur. Bakterilerle aşılanan tohumlar, steril kum+perlit içeren ortamlara ekilmiştir. Bitkiler çiçeklenmenin %50’sini geçtiği dönemde hasat edilmiş ve bazı verim ve verim unsurları ölçülmüştür. Nohut bitkisinin tohumlarına rhizobium, azotobakter ve rhizobium/azotobakter kombine bakterilerinin aşılanmasının etkileri üzerine farklılıklar istatistiksel olarak önemli bulunmuştur. Denemede nohut bitkisinin bitki üst aksam yaş ve kuru ağırlık, nodül sayısı, nodül ağırlığı, bitki üst aksam azot ve kökte azot içeriğine rhizobium/azotobakter kombine aşılaması etkili olmuştur. Bunun yanı sıra bitki üst aksam ve kök uzunluğuna rhizobium aşılaması, nohut bitkisinin kök yaş ve kuru ağırlığına ise azotobakter aşılamasının etkili olduğu belirlenmiştir.

References

  • Andjelković, S., Vasić, T., Lugić, Z., Babić, S., Milenković, J., Jevtić, G., & Živković, S. (2014). The influence of individual and combined inoculants on development of alfalfa on acidic soil. Quantitative Traits Breeding for Multifunctional Grasslands and Turf, 353-357. https://doi.org/10.1007/978-94-017-9044-4_48
  • Bandhu, R.B., & Parbati, A. (2013). Effect of Azotobacter on growth and yield of maize. SAARC Journal of Agriculture, 11, 141-147. https://doi.org/10. 3329/sja.v11i2.18409
  • Behera, B., Das, T.K., Raj, R., Ghosh, S., Raza, B. Md., & Sen, S. (2021). Microbial consortia for sustaining productivity of non-legume crops: Prospects and challenges. Agricultural Research, 10, 1–14. https://doi.org/10.1007/s40003-020-00482-3
  • Dashadi, M., Khosravi, H., Moezzi, A., Nadian, H., Heidari, M., & Radjabi, R. (2011). Co-inoculation of rhizobium and azotobacter on growth indices of faba bean under water stress in the greenhouse condition. Advanced Studies in Biology, 3 (8), 373-385.
  • Gharib, A.A., Shahein, M.M., & Ragab, A.A. (2015). Influence of rhizobium inoculation combined with Azotobacter chrococcum and Bacillus megaterium var. phosphaticum on growth, nodulation, yield and quality of two snap been (Phaseolus vulgaris L.) cultivars. Annals of Agricultural Science, Moshtohor, 53 (2), 249-261. https://doi.org/10.21608/ASSJM.2015.109816
  • Gosal, S.K., & Kaur, J. (2017). Microbial Inoculants: A novel approach for better plant microbiome interactions. In Probiotics in Agroecosystem; Springer: Singapore; pp. 269-289. ISBN 9789811040597. https://doi.org/10.1007/978-981-10-4059-7_14
  • Herridge, D.F., Peoples, M.B., & Boddey, R.M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1-18. https://doi.org/10.1007/s11104-008-9668-3
  • Iruthayathas, E.E., Gunasekaran, S., & Vlassak, K. (1983). Effect of combined inoculation of azospirillum and rhizobium on nodulation and N2-fixation of winged bean and soybean. Scientia Horticulturae, 20, 231-240. https://doi.org/10.1016/0304-4238(83)90003-1
  • Ibrahim, H.M., & El Sawah, A.M. (2022). The mode of integration between azotobacter and rhizobium affect plant growth, yield, and physiological responses of pea (Pisum sativum L.). Journal of Soil Science and Plant Nutrition, 22, 1238-1251. https://doi.org/10.1007/s42729-021-00727-2
  • İşler, E., & Coşkan, A. (2009). Farklı bakteri (Bradyrhizobium japonicum) aşılama yöntemlerinin soyada azot fiksasyonu ve tane verimine etkisi. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 15 (4) 324-331. https://doi.org/10.1501/Tarimbil_0000001107
  • Joshi, B., Chaudhary, A., Singh, H., & Kumar, P.A. (2020). Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant and Soil, 457, 225-240. https://doi.org/10.1007/s11104-020-04730-x
  • Ju, W., Liu, L., Fang, L., Cui, Y., Duan, C., & Wu, H. (2019). Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety, 167, 218-226. https://doi.org/10.1016/j.ecoenv.2018.10.016
  • Kacar, B., & Katkat, A.V. (2007). Bitki besleme. Nobel Yayın No:849, Üçüncü baskı, 659 s, Ankara.
  • Meral, N., Çiftçi, C.Y., & Ünver, S. (1998). Bakteri aşılaması ve değişik azot dozlarının nohut (Cicer arietinum L.)’un verim ve verim öğelerine etkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 7 (1), 44-59.
  • Nawaz, A., Shahbaz, M., Asadullah, Imran, A., Marghoob, M.U., Imtiaz, M., & Mubeen, F. (2020). Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions. Frontiers in Microbiology, 11, 2019. https://doi.org/10.3389/fmicb.2020.02019
  • Rana, A., Joshi, M., Prasanna, R., Shivay, Y.S., & Nain, L. (2012). Biofortifcation of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50, 118-126. https://doi.org/10.1016/j.ejsobi.2012.01.005
  • Rana, A., Saharan, B., Nain, L., Prasanna, R., & Shivay, Y.S. (2012). Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science Plant Nutrition, 58, 573-582. https://doi.org/10.1080/00380768.2012.716750
  • Rodelas, B., GonzaÂlez-LoÂpez, J., Pozo, C., SalmeroÂn, V.M.V., & MartõÂnez-Toledo, M.V. (1999a). Response of faba bean (Vicia faba L.) to combined inoculation with Azotobacter and Rhizobium leguminosarum bv. viceae. Applied Soil Ecology, 12, 51-59. https://doi.org/10.1016/S0929-1393(98)00157-7
  • Rodelas, B., González-López, J., Martínez-Toledo, M.V., Pozo, C., & Salmerón, V. (1999b). Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biology and Fertility of Soils, 29, 165-169. https://doi.org/10.1007/s003740050540
  • Rodríguez, E.V., Cota, F.P., Longoria, E.C., Cervantes, J.L., & de los Santos-Villalobos, S. (2019). Bacillus subtilis TE3: A promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological Control, 132, 135-143. https://doi.org/10.1016/j.biocontrol.2019.02.012
  • Siddiqui, A., Shivle, R., Magodiya, N., & Tiwari, K. (2014). Mixed effect of rhizobium and azotobacter as biofertilizer on nodulation and production of chick pea, Cicer arietinum. Bioscience Biotechnology Research Communications, 7 (1), 46-49.
  • Siczek, A., & Lipiec, J. (2016). Impact of faba bean-seed rhizobial inoculation on microbial activity in the rhizosphere soil during growing season. International Journal of Molecular Sciences, 17 (5), 784 https://doi.org/10.3390/ijms17050784
  • Somasegaran, P., & Hoben, H.J. (1994). Handbook for Rhizobia: Methods in legumes-rhizobium technology. Springer-Verlag, New York, Inc., 450. https://doi.org/10.1007/978-1-4613-8375-8
  • Verma, A., Rawat, A.K., & More, N. (2014). Extent of nitrate and nitrite pollution in ground water of rural areas of Lucknow, UP, India. Current World Environment, 9 (1), 114. https://doi.org/10.12944/CWE.9.1.17
  • Vincent, J.M. (1970). A manual for the practical study of the root-nodule bacteria. Blackwell Scientific Publications: Oxford, UK.
  • Yadegari, M., & Rahmani, H.A. (2010). Evaluation of bean (Phaseolus vulgaris L.) seeds’ inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria (PGPR) on yield and yield components. African Journal of Agricultural Research, 5 (9), 792-799. https://doi.org/10.3923/pjbs.2008.1935.1939

The effect of Rhizobium, Azotobacter and microbial consortium (Rhizobium/Azotobacter) on some growth parameters and nodulation of chickpeas (Cicer arietinum L.)

Year 2024, Volume: 29 Issue: 3, 735 - 745
https://doi.org/10.37908/mkutbd.1480633

Abstract

The adoption of microbial fertilizers such as rhizobium and azotobacter can reduce the requirement for chemical fertilizers and their negative impact on the environment. Overuse of chemical fertilizers to increase productivity has been shown to increase costs, reduce the microorganism population of the soil, and cause serious human and animal health problems by accumulating in plants and entering groundwater. For this purpose, a greenhouse experiment was conducted under controlled conditions with treatments of control, nitrogenous control, rhizobium, azotobacter, and the rhizobium/azotobacter consortium. Seeds inoculated with bacteria were planted on media containing sterile sand + perlite. Plants were harvested at 50% flowering, and some yield and yield components were determined. Inoculation of chickpea seeds with rhizobium, azotobacter, and rhizobium/azotobacter combinations of bacteria had different effects, and these differences were found to be statistically significant. In the experiment, rhizobium/azotobacter treatments were effective on the wet and dry weight of plant upper parts, the number of nodules, the weight of nodules, the nitrogen content of plant upper parts, and the nitrogen content of the root of the chickpea plant. In addition, rhizobium inoculation was effective on the plant's upper part and root length, and azotobacter inoculation was effective on the wet and dry weight of chickpea roots.

References

  • Andjelković, S., Vasić, T., Lugić, Z., Babić, S., Milenković, J., Jevtić, G., & Živković, S. (2014). The influence of individual and combined inoculants on development of alfalfa on acidic soil. Quantitative Traits Breeding for Multifunctional Grasslands and Turf, 353-357. https://doi.org/10.1007/978-94-017-9044-4_48
  • Bandhu, R.B., & Parbati, A. (2013). Effect of Azotobacter on growth and yield of maize. SAARC Journal of Agriculture, 11, 141-147. https://doi.org/10. 3329/sja.v11i2.18409
  • Behera, B., Das, T.K., Raj, R., Ghosh, S., Raza, B. Md., & Sen, S. (2021). Microbial consortia for sustaining productivity of non-legume crops: Prospects and challenges. Agricultural Research, 10, 1–14. https://doi.org/10.1007/s40003-020-00482-3
  • Dashadi, M., Khosravi, H., Moezzi, A., Nadian, H., Heidari, M., & Radjabi, R. (2011). Co-inoculation of rhizobium and azotobacter on growth indices of faba bean under water stress in the greenhouse condition. Advanced Studies in Biology, 3 (8), 373-385.
  • Gharib, A.A., Shahein, M.M., & Ragab, A.A. (2015). Influence of rhizobium inoculation combined with Azotobacter chrococcum and Bacillus megaterium var. phosphaticum on growth, nodulation, yield and quality of two snap been (Phaseolus vulgaris L.) cultivars. Annals of Agricultural Science, Moshtohor, 53 (2), 249-261. https://doi.org/10.21608/ASSJM.2015.109816
  • Gosal, S.K., & Kaur, J. (2017). Microbial Inoculants: A novel approach for better plant microbiome interactions. In Probiotics in Agroecosystem; Springer: Singapore; pp. 269-289. ISBN 9789811040597. https://doi.org/10.1007/978-981-10-4059-7_14
  • Herridge, D.F., Peoples, M.B., & Boddey, R.M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1-18. https://doi.org/10.1007/s11104-008-9668-3
  • Iruthayathas, E.E., Gunasekaran, S., & Vlassak, K. (1983). Effect of combined inoculation of azospirillum and rhizobium on nodulation and N2-fixation of winged bean and soybean. Scientia Horticulturae, 20, 231-240. https://doi.org/10.1016/0304-4238(83)90003-1
  • Ibrahim, H.M., & El Sawah, A.M. (2022). The mode of integration between azotobacter and rhizobium affect plant growth, yield, and physiological responses of pea (Pisum sativum L.). Journal of Soil Science and Plant Nutrition, 22, 1238-1251. https://doi.org/10.1007/s42729-021-00727-2
  • İşler, E., & Coşkan, A. (2009). Farklı bakteri (Bradyrhizobium japonicum) aşılama yöntemlerinin soyada azot fiksasyonu ve tane verimine etkisi. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 15 (4) 324-331. https://doi.org/10.1501/Tarimbil_0000001107
  • Joshi, B., Chaudhary, A., Singh, H., & Kumar, P.A. (2020). Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant and Soil, 457, 225-240. https://doi.org/10.1007/s11104-020-04730-x
  • Ju, W., Liu, L., Fang, L., Cui, Y., Duan, C., & Wu, H. (2019). Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety, 167, 218-226. https://doi.org/10.1016/j.ecoenv.2018.10.016
  • Kacar, B., & Katkat, A.V. (2007). Bitki besleme. Nobel Yayın No:849, Üçüncü baskı, 659 s, Ankara.
  • Meral, N., Çiftçi, C.Y., & Ünver, S. (1998). Bakteri aşılaması ve değişik azot dozlarının nohut (Cicer arietinum L.)’un verim ve verim öğelerine etkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 7 (1), 44-59.
  • Nawaz, A., Shahbaz, M., Asadullah, Imran, A., Marghoob, M.U., Imtiaz, M., & Mubeen, F. (2020). Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions. Frontiers in Microbiology, 11, 2019. https://doi.org/10.3389/fmicb.2020.02019
  • Rana, A., Joshi, M., Prasanna, R., Shivay, Y.S., & Nain, L. (2012). Biofortifcation of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50, 118-126. https://doi.org/10.1016/j.ejsobi.2012.01.005
  • Rana, A., Saharan, B., Nain, L., Prasanna, R., & Shivay, Y.S. (2012). Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science Plant Nutrition, 58, 573-582. https://doi.org/10.1080/00380768.2012.716750
  • Rodelas, B., GonzaÂlez-LoÂpez, J., Pozo, C., SalmeroÂn, V.M.V., & MartõÂnez-Toledo, M.V. (1999a). Response of faba bean (Vicia faba L.) to combined inoculation with Azotobacter and Rhizobium leguminosarum bv. viceae. Applied Soil Ecology, 12, 51-59. https://doi.org/10.1016/S0929-1393(98)00157-7
  • Rodelas, B., González-López, J., Martínez-Toledo, M.V., Pozo, C., & Salmerón, V. (1999b). Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biology and Fertility of Soils, 29, 165-169. https://doi.org/10.1007/s003740050540
  • Rodríguez, E.V., Cota, F.P., Longoria, E.C., Cervantes, J.L., & de los Santos-Villalobos, S. (2019). Bacillus subtilis TE3: A promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological Control, 132, 135-143. https://doi.org/10.1016/j.biocontrol.2019.02.012
  • Siddiqui, A., Shivle, R., Magodiya, N., & Tiwari, K. (2014). Mixed effect of rhizobium and azotobacter as biofertilizer on nodulation and production of chick pea, Cicer arietinum. Bioscience Biotechnology Research Communications, 7 (1), 46-49.
  • Siczek, A., & Lipiec, J. (2016). Impact of faba bean-seed rhizobial inoculation on microbial activity in the rhizosphere soil during growing season. International Journal of Molecular Sciences, 17 (5), 784 https://doi.org/10.3390/ijms17050784
  • Somasegaran, P., & Hoben, H.J. (1994). Handbook for Rhizobia: Methods in legumes-rhizobium technology. Springer-Verlag, New York, Inc., 450. https://doi.org/10.1007/978-1-4613-8375-8
  • Verma, A., Rawat, A.K., & More, N. (2014). Extent of nitrate and nitrite pollution in ground water of rural areas of Lucknow, UP, India. Current World Environment, 9 (1), 114. https://doi.org/10.12944/CWE.9.1.17
  • Vincent, J.M. (1970). A manual for the practical study of the root-nodule bacteria. Blackwell Scientific Publications: Oxford, UK.
  • Yadegari, M., & Rahmani, H.A. (2010). Evaluation of bean (Phaseolus vulgaris L.) seeds’ inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria (PGPR) on yield and yield components. African Journal of Agricultural Research, 5 (9), 792-799. https://doi.org/10.3923/pjbs.2008.1935.1939
There are 26 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Ecology, Soil Sciences and Plant Nutrition (Other)
Journal Section Araştırma Makalesi
Authors

Ummahan Çetin Karaca 0000-0003-0691-5503

Fırat Uzun 0000-0002-5389-0516

Mahmoud Nazzal 0000-0002-9399-773X

Ömer Faruk Öztürk 0009-0004-5741-4332

Early Pub Date December 3, 2024
Publication Date
Submission Date May 8, 2024
Acceptance Date July 14, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Çetin Karaca, U., Uzun, F., Nazzal, M., Öztürk, Ö. F. (2024). The effect of Rhizobium, Azotobacter and microbial consortium (Rhizobium/Azotobacter) on some growth parameters and nodulation of chickpeas (Cicer arietinum L.). Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(3), 735-745. https://doi.org/10.37908/mkutbd.1480633

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download